
Ocean waves – wave pressure 

 

The Danish crown prince weightless up in the air  - (despite his mass of several kilograms). 

Likewise will high splashing water from a standing wave by a vertical face breakwater lose weight. 

So below a high wave crest, at still water level, will the water pressure be substantially lower than 

the mass weight of the above water (= hydrostatic pressure, the pressure traditionally used)? 

 

 

 

 

Danish crown prince Frederik is here waved into the air by his father prince Henrik in Fredensborg garden. 

Portrait of the Danish royal family from 1974, featuring glimpses from the Queen's private and official daily 

life. The program was made in collaboration with the BBC. Can be seen on youtube:  

https://www.youtube.com/watch?v=dVsRXsAPoAE: Queen Margrethe of Denmark: A portrait (1974) 



1 
 

Improvement of the simple water wave formulas 

The classical wave theory can easily be improved to give more convincing simple formulas for wave 

pressure and water particle velocities, especially of importance the pressure close to the surface. This is 

shown here below for the simple standing wave at a vertical face breakwater, and before that shown for 

the simple (1’ order) deep water progressive wave, and also for the deep water (2’ order) cnoidal wave. 

For each wave: one page with simple formulas, including the proof of its correct wave theory (page 3, 4, 8).  

Wave topping with vertical acceleration 

When lifting a child in your arms and for fun waving it high up and down then it is easy to feel that its 

weight is felt different when the child is down and when it is high up. A 7 kg weight is felt maybe like 3 kg or 

less when high up. This is a result of Newton’s 2’ law for the equation of motion with the child’s downward 

acceleration. 

We have the same phenomena when the water waves move up and down by a vertical wall. This could be a 

vertical face concrete breakwater standing in 10 m deep water subjected to ocean waves moving 5 m up 

and down. So when the wave has crest then the water pressure on the wall will be less than the normal 

weight of water all the way from the water top surface and down, because of the water’s downward 

acceleration. So the pressure is less than the hydrostatic pressure predicted by the classical wave theory. 

Traditional classical wave theory, a mathematical potential theory  

In the 19’ century theories with the mathematical description of regular water waves were published. They 

were excellent theories, with necessary minor mathematical physical approximations, e.g. a so called 1’ 

order theory for waves of small wave heights, with simple relevant formulas yielding recognizable practical 

results, widely used by engineers. This excellent 1’ order theory shows that the increase in the water 

pressure on the wall, the wave pressure, when there is crest, decreases downwards according to the 

hyperbolic cosine function, cosh. This is in agreement with Newton’s 2’ law of motion because of the 

vertical acceleration when the water turns from moving upwards to moving downwards. But the cosh is 

used from the mean water level (MWL) and down in this potential wave theory, and not up all the way 

down from the surface where the acceleration is biggest. This wave theory is based on a mathematical 

potential theory not entirely operating directly with the physics of the water. The result for bigger waves 

deviates to some extent in some formulas relevant for the structural harbor engineer, e.g. wave pressure. 

Direct physical wave theory– new simple easy proven formulas– deep water waves and standing waves  

With an alternative mathematical description of the wave theory based directly on the physics of the water 

these simple 1’ order formulas can easily be improved to be more engineer trustworthy for waves of 

relevant size in designing structures. The crest pressure at mean water level MWL is not hydrostatic, it is 

noticeable less. And the pressure at the trough surface is = 0, so the sucking pressure of the wave trough is 

bigger than according to the potential theory. The improved formulas of 1’ order approximation with 

theoretically verifications are shown in the following 2 short examples of wave descriptions: the 

progressive deep water wave (from the next page), and the general standing wave (from page 6).  
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Deep water 1’ order sinusoidal wave and 2’ order cnoidal wave  

The smooth regular ocean waves we see in straight rows coming towards us rolling our boat up and down 

they got in 1845 Airy to publish his famous much applied classical theory for simple periodic gravitational 

surface water waves: the sinusoidal wave. This theory gave us the natural connection between the wave 

period T and wave length L and thereby the wave celerity c. The wave surface elevation η is described by a 

sine function (or cosine) with a vertical wave height H from trough to crest. Formulas for wave pressure and 

horizontal and vertical particle velocity at any point in the water were given (of 1’ order approximation).  

The formula for the wave surface elevation η for a progressive wave is: 

η = H/2 cos θ1  

θ1 = k(x – ct),  k = 2π/L, t is the time, x and z are the horizontal and vertical coordinates, z = 0 at mean water 

level, MWL; wave crest ηc = H/2 at θ1 = 0, wave trough ηt = -H/2 at θ1 = π, and in between η = 0 at θ1 = π/2. 

But for big waves the crest will be taller than H/2 and more narrow than π, and the wave trough less deep 

than z = -H/2 and longer than π. This wave form is particular apparent for shallow waters, so in 1895 a 

special wave theory was published for shallow water waves called cnoidal waves. To describe these waves 

using the cos θ1 function we wish the θ1-axis to “shrink” by the crest and to “expand” by the trough “so that 

π/2 moves closer to θ1 = 0”. For this purpose we can use a Jacobi mathematical elliptic function. And this 

function can be used not only for traditional shallow water waves, but all the way out to deep water waves. 

Progressive deep water waves 

With θ1 = 2θ the sinusoidal wave surface elevation can be written as 

η = H cos2θ - H/2,   where H/2 = trough depth 

In the same way we write the cnoidal wave with Jacobi’s elliptic cosine function: 

η = H cn2θ - trough depth 

where an elliptic parameter m determines “how high and narrow” the wave crest is, and determines the 

elliptic integrals of first and second kind: K and E (given by table or computer). We will here show that the 

cn2θ we know from shallow water waves can also be used for even 2’ order deep water waves. 

The Jacobi elliptic parameter m is in my wave description found to be the rather simple expression: 

m K2 = π3 H/L for deep water. H/L is wave steepness, and H/L is max 14% in nature. 

(For any arbitrary water depth D we have:  m K2 = π3 H/L coth3kD  , all the way to including the solitary wave 

in shallow waters, with the same formulas for all regular progressive waves in a wave description of 2’ 

order, and with better fulfillment of boundary conditions than in the traditional wave theories).  

The cnoi deep water wave profile here differs very little from the traditional 2’ order sinusoidal wave, but 

the formulas here comply better with boundary conditions, so they are more relevant for practical use. 
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Formulas for the 1’ order deep water wave 

η = H/2 cos θ1  

c2 = g/k, so: L = c T;  k = 2π/L 

u = c η k ek(z- η) for the horizontal particle velocity 

w = ws e
k(z- η) , where the vertical particle velocity at the surface z = η is  ws = ∂η/∂t = -c ∂η/∂x  

p/γ + z = η ek(z- η)  is the water pressure; below MWL and trough surface: the wave pressure: p+
/γ = η ek(z- η)   

ek(z- η) pressure reduction downwards in our wave theory here starts from the wave surface, and not from 

MWL as in the classical potential theory. The formula here gives for the wave crest the expected 

acceleration reduced wave pressure at MWL (z = 0), and gives pressure p = 0 at the trough surface, also 

different for the potential theory. (Example: a North Sea drilling rig in deep water with L = 200 m wave with 

(measured) wave crest height =14 m gets at MWL (z = 0) a wave pressure = 9 m water pressure in the 

theory here, and 14 m water pressure by the Airy formula. So this simple formula for p/γ , fulfilling precisely  

the surface condition, gives a not insignificant reduction in calculation of pressure.)  

To prove the validity of the wave theory the formulas here will then for an ideal fluid be shown to fulfill the 

governing equations: conservation of mass and the dynamic equations to the 1’ order approximation:  

∂u/∂x = c ∂η/∂x k ek(z- η - c η ∂η/∂x k2ek(z- η) ; the last term:  η ∂η/∂x is of 2’ order in H/L, so: negligible here. 

∂w/∂z = - c ∂η/∂x k ek(z- η)  

Conservation of mass: ∂u/∂x + ∂w/∂z = 0 is then seen fulfilled for a 1’ order theory. 

Horizontal acceleration: Gx = du/dt = ∂u/∂t + u ∂u/∂x + w ∂u/∂z = c ∂η/∂t k ek(z- η)  + 2’ order terms 

For a progressive wave we have: ∂η/∂t = - c ∂η/∂x 

∂p/∂x = γ ∂η/∂x ek(z- η)    ( + 2’ order terms) is seen to fulfill: 

Horizontal dynamic equation:  ∂p/∂x = -ρ Gx = ρ c2 ∂η/∂x k ek(z- η)  = ρ g/k ∂η/∂x k ek(z- η)  = γ ∂η/∂x ek(z- η)   

Vertical acceleration: Gz = dw/dt = ∂w/∂t + u ∂w/∂x + w ∂w/∂z = - c ∂2η /∂x ∂t k ek(z- η)  + 2’ order terms 

∂p/∂z + γ =  γ η k ek(z- η)  is seen(using 1’order ∂2η/∂x2 = -k2 η) to fulfill: 

Vertical dynamic equation: ∂p/∂z + γ = -ρ Gz = ρ c ∂2η/∂x∂t ek(z- η) = -ρ c2 ∂2η/∂x2 ek(z- η = γ η k ek(z- η)  

It is seen that we did not need to assume irrotational motion. (Wanted rotation can be investigated 

afterwards). The wave theory here is not meant as just another way to develop the already known 1’ order 

wave theory, but to show that the better wave formulas here fulfill the wave equation correctly. A 1’ order 

theory should include those 2’ order terms that obvious improve the result as seen in the formulas here. 

γ = weight of water 10 kN/m3,  ρ = unit mass, g = acceleration of gravity = 9,81 m/sec2 ≂ 10 m/sec2   
1 m water pressure = 10 kN/m2   
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Formulas for the 2’ order cnoi deep water wave 

η = H cn2θ + ηt  ; (ηt is the negative trough depth, z = ηt)   

θ = 2K/L (x – c t)  

ηt = H/m (1 – m – E/K);  so: ηc = H/m (1– E/K);  ηc is wave crest height, ηt is the (negative) trough depth 

m K2 = π3 H/L for deep water 

c2 = g/k, so: L = c T;   k = 2π/L 

u = c η k ek(z- η) for the horizontal particle velocity 

w = c ∂η/∂x (-1 + η k) ek(z- η)  for the vertical particle velocity 

u and w here comply fully with the kinematic surface boundary condition (not just approximately as for the 

potential theory). 

p/γ + z = η ek(z- η) + π/4 H2/L ek(z- η) (1 - ek(z- η)) ; as the proposed approximate water pressure, (see below), 

     water pressure p fulfills p = 0 at the surface: z = η , and wave pressure p+ = p – z  = 0 at big depth: z →-∞ 

∂u/∂x = c k ∂η/∂x (1- η k) ek(z- η)  

∂w/∂z = c ∂η/∂x (-1 + η k) k ek(z- η) 

So the conservation of mass: ∂u/∂x + ∂w/∂z = 0 is seen fulfilled here in this 2’ order theory 

Horizontal accel Gx = du/dt = ∂u/∂t + u ∂u/∂x + w ∂u/∂z = c ∂η/∂t k ek(z- η) (1 – η k) = -c2k ∂η/∂x ek(z- η) (1 - η k) 

     (the convective terms are:  u ∂u/∂x + w ∂u/∂z = 0). 

∂p/∂x = γ ∂η/∂x ek(z- η)  (1 - η k)    ( + 3’ order terms ) is seen to fulfill: 

Horizontal dynamic equation: ∂p/∂x = -ρ Gx = ρ c2 ∂η/∂x k ek(z- η (1- η k) = γ ∂η/∂x ek(z- η) (1 - η k)  

The vertical dynamic equation is too laborious for this page.  

In making the wave equation to find the cnoi wave solution here, including determine mK2 , the vertical 

dynamic equation gives an expression for the pressure to be used in the horizontal dynamic equation, as 

described in the reference to my book below. 

From the internet: 

https://en.wikipedia.org/wiki/Cnoidal_wave#/media/File:Periodic_waves_in_shallow_water.jpg 
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US Army bombers flying over near-periodic swell in shallow water, close to the Panama coast (1933). The 
sharp crests and very flat troughs are characteristic for cnoidal waves. 
(I have seen a likewise group of cnoidal waves coming towards a beach of constant depth at Køge Bugt in 
Denmark a nice summer day. I wish I then had the instruments to measure: T, c, L, η, u, w, p). 
 
For practical use of also the deep water cnoidal wave I would for pressure just use the simple reduced 

formula: p/γ + z = η ek(z- η) with η from the cnoi wave. This pressure formula gives an expected pressure 

reduction also in the wave above mean water level MWL, (where the potential theory gives hydrostatic 

pressure). The precise 2’ order pressure formula (to be used in developing the wave theory) is 

(unabbreviated in 2’ order terms): 

p/γ + z = η + 1/k{[1/k ∂2η/∂x2 – 2 (∂η/∂x)2 - η ∂2η/∂x2][1- ek(z- η] + ½[(∂η/∂x)2 - η ∂2η/∂x2][1- e2k(z- η]} 

Here follows a few math ”cnoi formulas”: 

η = H cn2θ + ηt  (here ηt is negative) 

ηt is found by integrating η over a wave length L to give = 0:  ʃ0
x=Lη dx =0 

∂η/∂x = - 4K H/L √*(cn2θ (1- cn2θ)(1 – m + m cn2θ)] 

∂2η/∂x2 = -8K2 H/L2 (-1 + m -2 (2m – 1) cn2θ + 3m cn4θ)) 

∂3η/∂x3 = 64K3 H/L3 (1 - 2m + 3m cn2θ) √*(cn2θ (1 - cn2θ)(1 – m + m cn2θ)] 

 

Further description of this wave theory and cnoi waves on arbitrary depth, and other regular waves, see: 
http://lavigne.dk/waves/wavese.htm   or   http://www.mejlhede.dk/ 
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Wave pressure in a standing wave 

 

When moderate regular ocean waves travel towards a vertical face breakwater we observe that the waves 
become standing waves: the water at the vertical wall oscillates regular up to a crest and down to a trough. 

The height from the trough to the crest is the 
wave height H. The time from one crest at the wall 
to the next crest is the wave period T. At a 
distance from the wall we call the wave length L 
the water will oscillate with a crest at the same 
time as at the wall, while at the distance L/2 from 
the wall the water will oscillate opposite also with 
the wave height H. (L depends on the wave period 
T and the mean water depth, as decided by the 
wave theory). 
 
 

Water pressure example  
 
What will the water pressure on the wall be when there is a wave crest and when there is a wave trough? 
When there are no waves the water pressure 1 meter below the surface is = 1 meter water pressure (= 10 
kN/m2). There is hydrostatic water pressure from the surface and down to the bottom, so that with 10 m 
water depth the pressure at the bottom is 10 m water pressure. 
If the water at the wall has risen 5 m because of a high tide lasting for hours then this calm water will have 
a water pressure at 1 m depth of 1 m (= 1000 kg × acceleration of gravity 9,81 m/sek2 ≃ 10 kN/m2 
pressure), and at the bottom 15 m water pressure. 
If the water instead because of T = 6 seconds storm waves from the ocean has risen to a 5 m crest in a short 
second with a downward turning acceleration of 5 m/sec2 reducing the acceleration of gravity then the 
water pressure at 1 m depth is only ½ m = 5 kN/m2. This follows of Newton’s 2’ law (momentum). And this 
is shown in our wave theory here. 
With this moderate wave giving a crest at the wall of 5 m above the D = 10 m mean water depth then the 
pressure at the bottom will not be 10 + 5 = 15 m hydrostatic water pressure. The water by the wall is 
turning from upward movement to downward movement. So the water has a downward vertical 
acceleration, giving by Newton’s 2’ law that the pressure at the bottom will be less than 15 m water 
pressure. This less bottom pressure is also a result of the classical wave theories by Airy as well as Stokes 
from the 1800-s. 
 
Considering the water pressure 1 m below the surface of the wave crest we found that it would be less 
than 1 m, and for the waves of design interest: the high waves, the pressure will be even less than ½ m, and 
this cannot be seen in the classical wave theories. So we want a better expression for the wave pressure, a 
formula that fulfills the surface conditions for pressure and acceleration and Newton’s 2’ law. 
 
A different wave theory 
 

When designing a vertical face breakwater we want to know what wave pressure it will get. And more: we 
would like to know the wave pressure and water velocities everywhere in the water, from the surface to 
the bottom and all over the wave length. A different wave theory based on necessary practical 
approximations in its theoretical development will be given with formulas here. 
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Approximations 
 
For any flow of water we have the equation of continuity (conservation of mass), and we have the dynamic 
equation Newton’s 2’ law, to be used horizontally and vertically. But to get our wave theory we have to 
make some assumptions and some approximations: 
At the sea bottom the water will move somewhat back and forth, with a little friction, so we may see some 
bottom sand moving a little. In our theory we neglect that friction, and also friction at the wall, and internal 
friction. We have an ideal fluid. (When our wave theory gives the horizontal water velocity at the bottom 
we have the possibility to maybe make moderations as practical engineers). 
 
In our simple so called 1’ order wave theory we consider the wave height H as small compared to the wave 
length L. So terms of higher order in the wave steepness H/L can be neglected. 
When a 1’ order theory is developed we can develop a 2’ order theory by using the formulas of the 1’ order 
theory in the 2’ order terms. 
 
At the wall the water moves vertically up and down, which according to the 1’ order theory follows the sine 
(sinus) or cosine as a function of time t. By this we can calculate the vertical velocity and acceleration of the 
surface water. At the bottom the vertical velocity and acceleration is = 0. Then we can propose and try to 
prove in our wave theory if we can use that the acceleration from the surface and decreasing down to the 
bottom can be distributed as hyperbolic sine (sinh), that is all the way from the surface of the wave crest 
with a possible big negative acceleration and down to the bottom (and not just from the mean water level 
MWL and down). This will according to Newton’s 2’ law give that the wave pressure on the wall will have a 
cosh distribution all the way from the crest surface, giving e.g. that the wave pressure at the mean water 
level is less than hydrostatic pressure. 
 
It is then to be proved that using this sinh vertical distribution and the equation of continuity and Newton’s 
2’ law of momentum we will get the wave equation for a regular standing wave. 
 
The mathematical development of the wave theory is given on: http://lavigne.dk/waves/Ch5.pdf 
This is chapter V in my book on more new wave theories: ”Regular Waves, 1977”: 
http://lavigne.dk/waves/wavesd.htm, or use my home page: www.mejlhede.dk 

         
Figure 2: Wave pressure on a vertical wall at mean water level (MWL) below the wave crest of a regular 
wave, according to the 1’ order theory. With a wave height of e.g. H = 1 meter the crest height is = 0.5 
meter, so this gives a wave pressure of 0.5 m water (= 5 kN/m2) according to the Airy theory. 
Airy’s classical theory does not include the pressure reducing effect of the “turning” acceleration of the 
above crest, which is included in my wave theory, and this is better according to experiments. Formula on 
the next page, illustrated in this figure for different wave steepness H/L and different mean depth D.  



8 
 

Formulas for the simple 1’ order standing wave 
 
In a coordinate system x,z with 0,0 at the foot point of the wall the equation for the surface profile 
measured from the mean water level MWL at z = D for the regular 1’ order standing wave is:  
 
η = H/2 cos(ωt) cos(kx) 

 
For a water particle with the coordinates x,z and time t we get the following formulas for water pressure p, 
and vertical velocity w, and vertical acceleration Gz , to be used anywhere in the water: 
 
p/γ = y - z + (Gs/g) × (cosh(Ry) – cosh(Rz)) / (R sinh(Ry)) abbreviated to p/γ = D - z + η cosh(Rz) / cosh(Ry)  
    for water pressure anywhere, and for wave pressure p+/γ above MWL 
 
From this p/γ we get the wave pressure p+/γ by subtracting the hydrostatic pressure from MWL: p/γ = D – z 
(This hydrostatic pressure is the same as the water pressure on the calm harbor side of the breakwater). 
 
Above the trough from surface to MWL we have negative hydrostatic pressure: p+/γ = p/γ = z – D 
 
Below the surface of trough and below MWL (z ⋜ D) for crest we get the wave pressure: 
 

p+
/γ = η + (Gs/g) × (cosh(Ry) – cosh(Rz)) / (R sinh(Ry));  abbreviated (1’ order) to p+

/γ = η cosh(Rz) /cosh(Ry) 
 
w = ∂η/∂t × sinh(Rz) / sinh(Ry) 
 
Gz = ∂2η/∂t2 × sinh(Rz) / sinh(Ry);  at the surface z= y:  Gs = ∂2η/∂t2 
 
(L/T)2 = g/k × tanh (kD) 
 
q = H/2 × L/T × sin(ωt) sin(kx) 
 
u = q × R × cosh(Rz) / sinh(Ry) 
 
y = D + η, where D = mean water depth, so y = actual water depth. 
 
For the regular 1’ order wave we have: ∂2η/∂t2 = - ω2

 × η,  R = k = 2π/L,  ω = 2π/T 

γ = weight of water 10 kN/m3,  g = acceleration of gravity =  9,81 m/sec2 ≂ 10 m/sec2   
 
Formulas for p+, w, G, and u are of 1’ order approximations, and in developing the wave theory the 
distribution of one of them is estimated and assumed, like sinh for the vertical acceleration, and then the 
theory gives the other formulas. (Or we can instead assume u to be cosh distributed). 
 
For the surface z = y (= D + η) we have: 
pressure p = 0,   vertical velocity ws = ∂η/∂t,  vertical acceleration Gz=s = Gs = ∂2η/∂t2 
Wave pressure at the surface: p+

/γ = 0 above MWL, and p+
/γ = η (negative) at wave trough surface. 

 
We get the simple traditional classic Airy formula for wave pressure by substituting y = D in the above 
formula, as η in a 1’ order theory is considered small and neglected: 
p+

/γ = η × cosh(kz) /cosh(kD), but for z > D (above MWL) hydrostatic pressure is used. 
This gives a bigger wave pressure than in my experiments and by my formula. 
At the surface of the wave trough the Airy formula does not give the water pressure p = 0.  
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Test to prove the formulas for the standing wave of 1’order approximation 

η = H/2 cos(ωt) cos(kx)  

k = 2π/L,  ω = 2π/T;  y = D + η, where D = mean water depth, so y = actual water depth 

For the regular 1’ order wave we have: ∂2η/∂t2 = - ω2
 × η 

(L/T)2 = g/k tanh(kD) ;  (similar to c2 = g/k tanh(kD) for the progressive wave) 

q = H/2 L/T sin(ωt) sin(kx);  [because: ∂q/∂x = - ∂y/∂t = - ∂η/∂t+ 

u = q k cosh(kz) /sinh(ky) = H/2 L/T k sin(ωt) sin(kx) cosh(kz) /sinh(ky);   [because: ʃ0
y
 u dz = q] 

w = ∂η/∂t sinh(kz) /sinh(ky) = - H/2 ω sin(ωt) cos(kx) sinh(kz) /sinh(ky) 

p/γ = y - z + (Gs/g) (cosh(ky) – cosh(kz)) /(k sinh(ky)) = D+η – z – ω2 η/g/k coth(ky)[1 – cosh(kz)/cosh(ky)] 

= D - z + η cosh(kz) /cosh(ky);  [because ω2/g/k = tanh(kD) = tanh(ky) (1’ order), and tanh(ky) coth(ky) =1]  

To prove the validity of the wave theory the formulas here will then for an ideal fluid be shown to fulfill the 

governing equations: conservation of mass and the dynamic equations, to the 1’ order approximation:  

∂u/∂x + ∂w/∂z = H/2 k (L/T k – ω) sin(ωt) cos(kx) cosh(kz) /sinh(ky) = 0  conservation of mass fulfilled 

Gz = dw/dt = ∂2η/∂t2 × sinh(kz) /sinh(ky) = - ω2
 × η × sinh(kz) /sinh(ky) ;    at the surface z = y:  Gs = ∂2η/∂t2 

- ∂p/∂z = γ + γ (Gs/g) sinh(kz) /sinh(ky); unit weight γ = ρ g  unit mass × acceleration of gravity 

- ∂p/∂z - γ =  ρ Gz         vertical dynamic equation fulfilled 

Gx = du/dt = H/2 L/T k ω cos(ωt)sin(kx) cosh(kz)/sinh(ky) = - ∂η/∂x L/T ω cosh(kz)/sinh(ky) tanh(ky)/tanh(kD) 

= - g ∂η/∂x cosh(kz)/(cosh(ky)   (using 1’ order: 1= tanh(ky)/tanh(kD), tanh(kD) = L/T ω/g) 

∂p/∂x = ρ g ∂η/∂x cosh(kz)) /cosh(ky);   (with: γ = ρ g) 

- ∂p/∂x = ρ Gx   horizontal dynamic equation fulfilled 

So this standing wave is in all the formulas a correct 1’ order wave. 

Below mean water level MWL, and below trough surface the wave pressure is: 

p+
/γ = η + (Gs/g) × (cosh(ky) – cosh(kz)) / (k sinh(ky))   

so as wanted: at trough surface p+
/γ = η, and at MWL below crest  p+

/γ is less than η here in this wave 

description, a wave solution improved with better boundary conditions.. 

γ = weight of water 10 kN/m3,  g = acceleration of gravity =  9,81 m/sec2 ≂ 10 m/sec2   
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Figure 3: Wave pressure on a vertical wall from a standing wave of H/L = 16% steepness.  
Using the 1’ order formulas written above and compared to my experiments 1968 at The Technical 
University of Denmark. In the model tests we measured the total horizontal sliding force and the 
overturning moment, needed for calculating the foundation stability of a breakwater. 
 
We see that the theory is in reasonable good agreement with experiment. 
The Airy wave formulas will not give quite as good agreement as can be seen of figure 2. 
The difference is that in my formulas I use the actual water depth y (= D + η), and the Airy theory considers 
η so small negligible that the mean water depth D is used. 
It is fully correct in a 1’ order wave theory to include 2’ order terms when we find it appropriate, and it 
should be done when it is in better agreement with reality. 
 
In the 1800-s, using the mathematical potential theory (ϕ) with its assumption of non-rotational waves Airy 
developed the very good classical 1’order wave theory, and Stokes a 2’ order wave theory. Airy’s 
mathematical wave theory for small waves has proved to be practical also for higher waves, and its simple 
formulas have been much used by engineers. 
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Figure 4: Wave pressure on a vertical wall from a standing wave of H/L = 3% steepness. 
 
We see that our 1’ order formula gives a too big negative pressure (the wave sucking force) below trough 
for this low steepness wave, shallow water wave. 
(It is possible to make the shown deviating pressure result better by using practical 2’ order alterations 
from e.g. the cnoi wave in some 1’ order formulas – still in a fully correct 1’ order wave theory). 
 
 
My similar formulas for the progressive wave on arbitrary depth can be proved in the same way. 
  
(Airy’ formula for horizontal velocity 
u = q × R × cosh(Rz) / sinh(RD) = c × η × 2π/L × cosh(Rz) / sinh(RD) 
It is seen to give a forward water flow (wave flow) that can be substantial for progressive waves of practical 
height.) 
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Figure 5: Measured water particle velocities in 2 progressive waves compared to wave theories. 
This is a figure from my book showing Airy’s simple 1’ order formulas for maximum water particle velocities 
compared to some 2’ order wave theories, and compared to laboratory experiments. We see how well Airy 
theory is for practical use. The measurements are seen to have been performed in a rather small wave 
flume. (I do not agree with the showing of Airy maximum vertical velocity above MWL z/D = 1). 
In my book I have developed a 2’ order cnoidal wave theory to be used from infinite depth all the way to 
shallow water solitary wave. 
  



13 
 

APPENDIX: Wave pressure on a vertical wall according to the traditional potential wave theory? 

 

 

                 
 

Figure 6: Wave pressure – disregarding Newton’s 2’ law (of momentum)? 

The figures here are from Danish Technical University, ISVA, DTU, 1973-1974, from page 7 and 14, used for 

education of wave pressure according to the potential theory of 1’ order (to the left) and 2’ order (to the 

right), showing hydrostatic pressure in the wave top – in contrast to the better formula given on page 3? 

 
Improved basis for practical use 

For the engineer designing harbor constructions there is an obvious statistical variation of all wave 

phenomena. Statistical variation is also the case for e.g. material parameters for the concrete used in the 

harbor breakwater. For the practical use of concrete an agreed “allowed” design strength is given to the 

engineer, based on scientific experiments and statistical evaluation, with the statistical rare risk that for 

your construction the concrete happens to be of lower value in strength than declared. It may be felt that 

the wave force is so unpredictable that it is unimportant what formula to use, because the statistical 

variation may give a bigger deviation than the correction using the formulas presented here. But no. 

Instead of using the classic potential theory the engineer’s decision for choosing a practical design force 

using 1’ order waves should be based on the obvious better theoretical solution with the simple 

mathematical better formulas here. 

 

Niels Mejlhede Jensen, 2022.11.29 


