CHAPTER 1V

THEORETICAL CALCULATION OF SHOCKFORCES



ABSTRACT

The shock pressure that can develop whern a mass of
water hits o rigid plane coustruction (like a breaking
wave hitting a vertical wall) is calculated theoretically
and the results are presented in a graph. The maximum
pressure depends onn the velocity of the oncoming water and
its content of airbubbles. It does not depend on the size
of the water. When the water approaches the construction
some of the alr in between is forced out, whereby it
delivers a reactive force of important magnitude, in spite
of the low density of the air. This reactive force is
balaricing the compressiorn that takes place for the rest of
the air, The maximum pressure 1s then reached before the
water has touched the wall. As the shock procegs is
different in the model case and in the prototype case, the
results do not fit dnto Froude's model scale law, as can

easlly be seenn on the graph.
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Fig.1. Introduction and definition sketch
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INTRODUCTION

From observations of nature and model tests it is
found plausible that a wave can approach a rigid wall in a
dangerous manner like the one shown on fig.1 left, giving a
slit of ailr between the wall and the waterfront. The air
starts a balanced adiabatic comnression and outfliow, and
the calculations show that the compressibility of this air
and the very modest density of the air in the outflow are
the physical factors governing the shock process, and that
the compressibility of the water 1s negligible,

The course of the shock can with good approximation
be divided into two physical distinct cases, First, when
the pressure 1s still low, case I, the air is regarded
incompressible and the pressure is given by the reactive
force of the air outflow. Second, when the water has moved
clogser to the wall and the pressure is getting higher,
case 1T, the outflow and adiabatic compression will be
substituted by no outflow and isothermal compression.

Although the formulas are evaluated by looking at
the unrealistic case, fig.1 right, the results show greater
usefulness, and water with airbubbles and a rough waterfront
ig treated, The difficulties in deciding the velocity of the
waterfront etc, of a breaking wave is not touched upon.,

Except where otherwise mentioned all the consider-
ations are for a plane case,

A1l non~dimension~homogenious equations are given in
the technical unit system, in megapond, Mp, and metres, m,
and seconds, s. For the density of the water is used the

fresh water term,q = 0.102 Mp - 52 /m”.
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CASE I, INCOMPRESSIBLE AIR

The idealized casge where a mass of water with plane
vertical front proceeds towards a plane vertical wall as
shown on fig,1 right will first be considered. The
horizontal velocity US of the water is provisionally
regarded as a constant over the time, 1+, and over =z
(commented after (25)). By this the air between the water
and the wall is forced out with a velocity Wa(z)n The
kinetic energy of the outflow is lost, so that the pressure
p(R) = 0,

As the air for the present is assumed incompressible
the usual equation of continuity holds:

U, -2z =25, wa(z) (1)
where & 18 the thickness of the air slit. Remembering that
8 1s timedependent the acceleration of an air-particle is

deduced from (1):

. 2
A AT 7 il
dt dt ‘a d7 5 ’ /

Neglecting the gravitational force the vertical
equilibrium of an air-particle yields the pressure p(z)
above atmospheric pressure of the air in front of the

water of:

. \ ol

aw,_(z) i
aplz) . arl o8 . 2
R A B (3)



where Q is the density of the air at atmospheric pressure,

a

Patme
Integrating and using p(R) = O

2

U
p(z) = q, ?E (R® - 2°) (4)

The mean value over 2 becomes:

For &6 close to O +this formula yields a fast rise

in pressure, With the absolute presgssure being p = p(z)

abs
+ Doy ¢ A0 adiabatic compression of a confined quantity of

air would only yvicld

= constant o A
g 1o %

Paps a
and an isothermal compression:

= Ty o wms o K o ezm (
Pobs i = constant 5 k. 5 (6)

TRANSITION TO CASE IT

Differentiating the isothermal expression (6):

p U
- - Q%LL&, (7)



With the absolute pressure in (4) being Pavs u ©

p(z) + Doy and differentiating it:

2
Pabs v __, . o . o8 (g2
as - Qg 52 T g

2y _
) = -2 (pabs u - patm) T (8)

By suddenly changing from the outflow formula (4) to

the isothermal formula (6) at & = 5; , where then

Povs u = Paps 1 ? the rise in pressure will be less for:
jdpabs i‘<§dpabs u
as | a5 (9)
b
2 (‘] - ..,.?;.JE@_M) > ]
Pabs u
pwm11>2pam (10)
p(z) > poin
Using the mean-pressure (5) 5; 1s found to:
U2
s , ne
pT o= =Q, g? R Potm
I
5 - é . Jwégu c U + R =2.9 - 1072 « U - R (m) (11)
+ g Patm S S

To create the compression of the air that actually
has taken place up to 61 with Pops = 2 Poty +5 needed a
1ittle additional air. As seen after (50) there will be

supplied some extra.
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For 6 < & the compregssion will be far greater than

I
incompressibility. Because of sufficient thickness of the
airlayer, and the short duration of the shock the compression
is adiabatic, This compression combined with the outflow
will in case I1 be treated as an isothermal compression

alfter formula (6). Further reasons Tor this choice are

given after (50), So in case II the mean-pressure is:

2 P .
w atm L
o= & Potm (12)

When a pressure~distribution is needed it will be

chosen as in (4):

n

p(2) =5 - pr v (

I
ol

) (13)

T -

R

HYDRODYNAMIC MASS

Using (3) on water by changing Q, to Q. , the
density of water, and by (5) and (13) the vertical

acceleration of the water in the waterfront is found To:s

1. é..Q,(mZ-l = 3 . J . ¥ (14)

G(Z) oo
Z wi Q, 0% Qy £ R2

A co-ordinatesystem (x,z) moves with U,. u and w being
the horizontal and vertical velocity respectively, at the
place regarded, the acceleration terms GX(X> and GZ(Z)

will be:



AU du QU

Go(x) =g +5x - m+ 5y v
= OW oW | ow
Gz(z) =Sty ocoutIp oW
00y ) = 22y + 2% w o+ (252 4 QEEM cow o+ 2% . W (15)
oX dXJT 5X2 OX dXJdZ 3% OX
2%a) v 2% L, am, 2P L, a2
%7 T ozt AXJ 3 DX dz az2 Dz

Regarding the waterfront where the

so rapid it is Jjustified to retain

timedependent changes are

only the first term in

BGX(X) BGZ(Z) o du .

—Sx— and - . After (22) it is shown that 5% 1s

comparatively small. By the equation of continuity,

U + M .. 0 '%%s ot

IX ¥ ’ gows

3G _(x G

e A AL N S T VIS (16)
oX W O0% wf 3t “ox o}

Then by differentiating (14):

mf%@l:?%giugolmap%ol? (17)

wf wi Qy R

Further information about GX(X> can be givern.  from the

horizontal dynamic equations

p(2) = o - [ o (max

(18)



As shown on fig.?2 GX(X> will be approximated by
a parabola. A certaln degree of inaccuracy in selecting
the approximative function to GX(X) will give a lower
degree of inaccuracy in the wanted result, namely

¢ (x)

- wf For eagier calculations x 1s put to 0O in

the waterfront, By looking at fig.2 the length ST is

found to:

G (x
R oxX wf a
u,] = 2 BG (&t) (1J)
ax_ wi
Then from (18):
1 . 2 ( )gu
p(2) =5 oy Sy 0 Gy = - % oy SR (20)
(=)
ok yr
and from (17) and (13):
G (X) ~— /w 2 o p‘(:/): (ax—G_‘ a(:f:ﬁl) — “;\./;5, ¢ .,-135: ° ‘q* B ,:L r\/‘] - Zin?,,
T wt v 39X Wt 2 Qv = R R2
(21)

The hydrodynamic mass will accelerate with the waterfront,

G (X)Wf , when acted upon by its pressure p(z). So it is

~

possible to deduce a hydrodynamic mass-length, S , by

using (20):

. . - -1 Lo
Qp * 8 GX(X>Wf = p(z) = 3 Qv - 5y G (})wf
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Hereby S is derived from (19), (21) and (17):
s =1 JRZ - 22 = 0,58 - J/r2 _g2 (22)

This expression is in force for both case I and II as the
pressure distribution is set +to the same (13%3). But even if
the pressure distribution is altered somewhat, 1t is seen
from (1%), (14), (17), (21) and (19) that S in (22) ends
up being close to the same, although the intermediate
results differ.

As the velocity u changes gradually over the distance

ou

81 it can be seen that % ig comparatively small in (15),

The mean value of S over =z 1is:

2* ﬁJQAZEUHMmewLWwN,A.,ﬂmm e B = 5 . P Z
g% = = = 43 R = 0.45 « R (23)
ET 'D;

St 4 Smax

where SmaX =S for =z = 0.

CHANGE OF VuLOCTTIES

Using mean values of pressure (5) and hydrodynamic
mass (2%) the change in momentwa, AT , of the water will be:

s
ALY R — T — b3 ° - e can 3 j-.: & =
Qo Q AUI = AT Njﬁp dt = | P74 as =

[ee]

_,J 2: Qa ° .[—J:cé—- RZ dé (24-)
o)



where U 1s the momentary horigontal velocity of the water.
Considering U independent of & , U = US , the mean
value of the change in horigzontal velocity, AUI , 1s,

using (11) and (23):

= 0,65 m/s (25)

2% Uy g o ap
AUI %z Q. 5} g: R T 5; 0 ° Patnm

For the design waves of the mnature this reduction in the
velocity, U d1s so small, that it was reasonable to regard

it as a constant, U =TU_ , above in (25) and inm (1),

Instead of using U =7U_, in dt = %dé in (24)

it coutd have been reasonable to use a mean value, so

Uu=10U_ - % o AUI , making AUI depending on Us . That

is done in the graph, fig.B.
Using (14) and (5) the vertical velocity of the

waterfront, V. , for & = 61 is found:

2

U

A V T S a, S
L TG (m) =2 ¢ e o —x e g

ot z wl Qs 62

= 2 ] E—@ ».IJ-;§. ] Z pamed ,\/ g [ ..:i_.m. l\/ ”Q—Amwm:*%:‘» N @ “Z;_
Qy bI Qy a atm R
=0.89 « g w/s (26)
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The hydrodynamic mass (2%), can not be used quite
as usually in the short duration of the impulsee, because
when the waterfront has Stoﬁged, the back of S* is able
to travel with that horizon%aL velocity, AUb1 that is
allowed by the vertical velocity through the equation of
continuity.

Tnstead of uging the real horigontal distribution
ofr the vertical velocity, VI from the waterfront is used

with =z =R , ¥V but only over the length of 5%,

T top ?
In this way AUbT will be:

AT _ VI top. - S | AU 0. * D = 0,40 m/s (27)
b1 R 2/2 Qy a ath

So 8% can with stopped waterfront have a mean

AT
horizontal velocity of S Compared with AUI in
(25) that reveals:
AUb1/2 w2
SR = 3‘*;2’ = 0,31 (28)
L
When 6 = 61 the impulsegiving horigontal velocity ol the

waterfront is reduced from Us to:

AU,

— - “.Q‘l. — T — - — =
UI = US - AUI = AJIab = US 0.85 AUIab (m/s) (29)
where AU = 0 when there are no airbubbles in the

Tab

water. (see (56))
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CASE II. COMPRESSIBLW AIR.

Now the water gets closer to the wall than the small
distance 61 . The calculations will again be performed for

mean values, so the pressure is as announced in (12):

and the problem is to stop the velocity Uy (29) o 8% (23),
Moving from 61 to & against the pressure p¥* , the water

performs a work of:

— 3% - : ,,;.:, - —
By = L T PT e A8 = 2D gy v O 0 vy = by (87 = 8)

From the horigontal velocity the water has a kinotic energy

Stopping UT a vertical velocily V? widbl he generated

like in (26)., If the vertical velocities could be neglected

the principles of energy could be used, whereby the impulse

would be gtopped for o6 = 6mjn by using Ek = [
1 2 o1
5 Qy © 5% o Up = 2Pyyy » by 0 0 ?;?; = Pgim (01 - bpin/) (30)

Dividing over by U and changing the left side Uy to

AU, (30) is changed to an egquation of momentum:
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8 -
P ° — gn: ® Py ° lt-,'z:‘m:-[w: o oo 3 ’
Qy * 5% ¢ AU, = U7 [2 Potm * 07 ° 0 5 i Potm(®1 = Spmin’ ]
(31)
and by using S* from (23):
AU - §\£a .l,;, ¢ p o) ° .l ° ng,, o [21/1’1 6I + 6mln - /]7
o =5 o, " Patm " °1 "R ] 8 n 87 J
(32)
Going from (30) to (31) the timedependent velocity
distribution in the equation of momentum, (31), actually
was declded to be so, that the mean value of U 1is =5
and thereby:
dt = = & + a (33)
= - ﬁ§ ° ad 22

Because the forceg involved in braking the horizontal
veloclity and generating the vertical are the same at any

moment, V will be a constant proportion of AU2

2
(see (%35)). Therefore the principles of energy are appliable
using only the horizontal velocity, when the involved mass,
S* , 1s reduced corresgpondingly to the effect of the

vertical velocities. So (33%) is in force here in the general

cas

D

making (%2) appliable when consideration to V2 is
done in the usual manner (like in (29)) in AU2,
The generated vertical velocity is then got from

(14) and (33):

<
|

1 — 9 ° J— 'ii fmm & ;ga::-a - oy
G,(z), 0 dt = - 3 e e % Zog— s =
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| 2D &
1 1 7 atm I
6 eames @ s @ | ( p -~ ) dé =
Q, Uy RZJ@ ) atm
min
6 A . 8 Jo o Z. [2 1 61. i ?mln, - 1*} (34)
T Patm T %1 T 2 A S
With V2 top = vV, for =z =R (34) and (32) are compared:
V =
2,500 o WP o g, (35)
AU, 4

Like in (27) this makes a difference, AU, , in front

and back velocity of S¥* :

2 top ° o, ~ 9
Ay = R =373 " Vo top T 0P 0 Vo gop
AU 2
P2 I _ ]
2 - 32 AUZ = Oa 51 ° AU2 ()6)

~ _ b2 . .
My = Up = =3 Up = 55+ AU,
— ;—:mxixw 3 —_ ? b
AU, = 5 ¢ Up = 0.76 « U (37)
1+ s
32

Substituting 61 with (11) the equation of momentum (32)

now yieldss
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Up =B - (1+ 52 T Q;f a atm T
o) . U ¢
5 T
e sic A I P A BRI R PR AP
min I . I min
Jmin oo .
+ 6]" 7_1 mn/s \§8)

where 8 = 1 , when there 1s no content of airbubbles in

the water as hitherto,

Finally (12) is used to get the wanted maximum mean

pressure
) 8.
I T o 2 /.
pr = D e i o D= 20,7 ¢ w-==- — 10.% Hip/m” (39)
max atm 6min atm émin

MODEL CASE

With low start values of the horizontal velocity,

U. , the impulseis over before case 11 isg reached. So U

12

can not be considered constant as in (25). Using (33)
which is also in force here, the change in horizontal

momentum, ATI(z) , is deduced from the general expressions

(22) and (4):
Fémin
©8 o AU, = AI(2) = [p(z) - dt = -J p(2z) %p . 45
1 J L

tOZ) pol

o



0 1 Y 2 2
AU =2 » =& o« 2 o =B o (RS - %) (40)
mn Qy 5 6min
where as in (29)
AU
_ 1 IR
AU, = Uy = =5 (41)
From (40) and (22):
9 [ Uy
5. (z) = 2/3 « =& « 4RT = g% o 45
min Qy Um
g
- o) o
= 4,5 .« 1077 . WRS - 27 . 5P (42)
m
For 2z - R , Gmin(z) - 0O , so0 there i1s a tendency to
closure of the air outlet,
The mean value of 6min(z) (42) over =z is:
_Q U, 5 u
6 . =T .2/5 2 p. B o550 1070 LR B (4%)
min ~ 4 Qy AU ZUm
Like in (26) the generated vertical velocity for 2z = R ,
v, top is got from (33), (14), (5) and (43%):
5 .
[ Pmin
A A 3 - —— i pS 23-;—.—;
vm top - jﬁgz(z)wf at = j - GZ(Z>wf Us a8
Qa U% 8
= 4 0 e e B 0 R oz oemem o AU = 1,47 o AT (44)
Qv Omin m/ 3 . m
Just as in (27), (23) then yields:
e gL Jzaen D21y (45)
2 T2 R -3
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Now (41) yields:

2. - AT
MU, =7 Uy = AUy (46)
where AUmab = 0 when there are no airbubbles in the
water, (see(57)). The maximum mean pressure is hercby
got from (5) and (43):
QZ
. 8 2 e 2
pE L = = Q-l’ ¢ AUS = 7.1 » AUS (Mp/m®) (47)
O a ) ’
with AU . =0 (47) will Dbe:
QZ
. ' 2 - 2
p¥ o = "”1*5 534 . Ué = 4,0 « Uy (Mp/m”) (48)
) 2m a
For U. = 1.9 m/s +the pressure found by (48) is the same

)

as found by (39).
DURATION OF THE SHOCK

The rise and fall of the pressure will be viewed asg
symmetrical although it is problematic if it is (the air
outflow shortens the fall, the behind the waterfront
approaching water makes 1t longer). The duration of the
shock,Atv , for the prototype will then be defined as the

time the pressure is more than Using (11):

patm °

o, /Sl

6_... s
i -
At =2 §m = Nz 8 R = 1.17 ¢ 107F

- R (s) (49)

Tn the model case AT is defined ag the time the
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pressure ig greater than %@ of the maximum pressure. That

happens for & <4 * 6 .. (4%) whereby:

48
At = 2 ¢ -=

. - 8. 5.
min min . min
e Lo oqo (50)

CONSIDERATION OF MATIN ASSUMPTIONS

Using the agsumption that The water all the time
during the shock moves as shown on fig.,1 right a more
accurate calculation can be done., Because of compression
of the air it will show a deficiency in pressure at the
end of casge I and the beginning of case II, if there is
allowed the big outflow as W(R) in (1) gives. But as
(42) shows, the outlet is narrowed, reducing the outflow,
This again promotes a more uniform vertical pressure
distribution making the mean pressure usable from 3z = 0O
to almost 2z = R ., For ocean size waves the pressure at
the end of case II gets higher than calculated because of
the adiabatic compregssion. But as the air gets more
compressed 1its expansion is first finished outside the
outlet, making the pregsure in the outlet greater than O,
This widens the outlet allowing more alr to escape.,

If the influence of the air in the slit was
disregarded and the pressure from compressible water then
calculated, it would reveal about 10 Times as high
pressures. Therefore the compressibility of the water
can be disregarded.

Trom (35) and (11) it can be seen that R changes

only about 1% in size before maximum pressure is reached,



ATRBUBBLES AND UNSMOCTH WATERFRONT

Airbubbles in the oncoming water near the waterfront
will soften the shock Dbecause they will get compressed, For
bubbles up to centimeter size the compression will be
isothermal, so 1t is possible to use the same formula as
in front of the water, (6). With GX(X) proportional to

2

X (see fig.2), the horizontal pressure distribution

p(Xj) will be:

p(x,) = p* * x7

pie
where X, = ] = i

! 35%
The volume of airbubbles within a unit cube at =x is
called GO(X) when there is no pressure, and ep(X) when

the pressure is p(XT), The isothermal compression law

then yields:

fapﬂ,g%; - P,);c_{. e Patm
o (x) ~ plx + D T . D
0 atm 1) X3+ paJGm

This gives a reduction, Ag(x) , in the volume of airbubbles:

. . 3
Ap(x) _ o) P
eo X”jﬂ T’”) p r ° 'v‘3 _}_

| Potm

For practical use %%%%%= can be taken as parabolic in x,

= OO WO ;1. * ) 1 o
as that agreecs well for 3 Doty < PF < 2 Pytm® With an
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evenly distributed airbubble content, the relative amount
at p* = 0 Dbeing o , the total reduction, Aetot , in
bubble volume by compression at p* therefore is the
same as was  Ap(x) from the waterfront valid over 8%
S0

Abpor = o * S% - P (51)

M

pT o+ Patm

This Aetot gives a further distance to stop the impulse
of the water,

For occan gsize US the calculation as usual is

divided into case I and case II, For p* = p_. (51)
will be:
A .n.j:,. o S-X-

Otot T =% ° @

In deciding the change in horizontal velocity, AUIa
there
from the airbubblesYis nceded:

A
P™ = Potm , .
p%\* o q A@tOb = (Lng - §> o pa_tm s o ¢ S
Jp¥ =0
- L] s ;/!: 8 L]
=2 (1n2 2) Patm Aetot I (52)
Using dt = %m » 48 like in (24) the same mode of procedure
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o, + 8% + AU = 2(u2 - %) ° p

Ta 5 atm U BOyoy T
AU, = (ln2 - l) ¢ e o D C b e g (53)
Ia 2 Q. atm US

there

In the graph (fig.3)Vis again (like at (24)) used a mean
value of U instead of US .

Because the airbubbles operatioially can be treated
like a reduced amount of air at the waterfront acting the
isothermal way like the air in front of the water in case
IT, the effect from the bubbles is simply included in

formula (38) by putting B to:

Ao, S
B:1+m~§_g£-m.£:1+mlj‘jma\/fpw.g;tﬂo%?wca (54_)
I 8/2 a 8
there

Por model size US\/is used (3%3) so like in (53%)

(51) givess

e
p*
AU = 4A (111’12 e -1-) ° .l.-u o Jm—- ® mm@i}ﬁmww e (X (55)
ma, 2 0 ) s
v S pﬁax + patm

Like in (26) and (44) a vertical velocity is created. Its
effect is as in (28) and (45) which, as expected, are of the
same size except for the minor difference induced by taking
mean values at different states of the evaluation. Using

+ as in (45) (5%) and (55) gives the velocity reducing

5
. N I °
sizes AUy, and AUmab to be used in (29) and (46):

el 4 -:l— o nlww—- ° L] .lww L ]
Mgy =% » (2 - 3) o . o o (56)
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%2
a ’ p pre
AU, ;Q « (12 - dy o, 1, [ nax . q (57)
mah 3 2 o, Ug % o
’ Poax ¥ Patnm

ITf there are bubbles only by the waterfront the
sum of them is regarded as « ° S* in (51)., Any roughness
of the waterfront is treatediathe same way.

When alr gets into the water its density, Qy

-

becomes Lower,
EXPLANATION TO THE GRAPH, PIG.3

In the graph U is the horigontal velocity in metres
per geconds of the oncoming waterfront, and P 1s the
maximum shock pressure in megaponds per square metres.

o refers to airbubbles as mentioned by formula (51).
THE CUBIC OR AXISYMMETRIC CASE

The formulas for the axisymmetric case are deduced ii1
the same marner as for the plane case., Now R 1s the radius
of a cylinder of water., The main formulas are changed to
the following for water without airbubbles:

(11) will bes

= [0 -
5. = %2 . ylﬁgm c U+ R =1.55+ 1077 « U_ + & (m) (58)

§% = ~fn s R = 0,27 ° R (59)
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(29) will be:

=TU_ - 0,75 (n/s) (60)

As this is a smaller reduction in velocity than in the
plane case it is understood that the model shock pressure
here is greater.

(38) will bez:

16 B 11 o1
Ur = (1 4+ 55) * 3/6 ¢ =+ p e bp 0w ¢ me o | 210
I 27 o, Fatm "I R T [ Omin
& . _ U ) o ..
- __Ig)lll”l - J - 1,85 e M_.S‘__ ¢ [21/_.(1 I > min - N (61)
T U, 5. 5 i
min I

I'or the prototype case this formula tends to give a smaller

pressure than in the plane case.
CONCLUSION

Although the formulas are cvaluated for the jdealizod
case in fig.l right, the final formulas (38) and (48) reveal
that the maximum pressure depends only on the velocity of
the oncoming waterfront, US , and not on its size, R.

As the parallel waterfront seems to be the most dangerous

case for the plane wall, what is found here is the highest
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possible pressure. It will then be reached when a wall is hit
by a mass of water of any shape, for instance just the top of
a wave, or even only a drop of water. Them R 1s the sige of
the water from the line of symmetry in pressure.
But the described pressure will usually only affect
an infinitesimal area, with much legss pressures around,
making it so difficult to decide a desigrn pressure, also
because the involved amount of airbubbles often is unknown,
The wall hit by the water does not need to be vertical

for the use of the formulas.

NOTATION

ks (= Potm 61)9 a constant in isothermal compression

[hel natural logarithme
p(X1) pressure above Potp 18 the water at Xy

p(z) pressure above in the waterfront at =z

D
“atm

P.ps absolute pressure (including patm)

Pabs a Pabs after adiabatic compression

D after isothermal compression

abs 1 “abs
Pobs u Pabs after the outflow formula
Potm atmospheric pressure
p¥ meari value of p(z) over z =0 to =z =R
(time dependent)
pk . ~ maximum value of p¥* (the shock pressure)
t time
u horizontal particle velocity
W vertical particle velocity

wf (as index) stating that the size is at the waterfront
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X horizontal co-ordinate

Xy horigzontal co-~ordinate

Z vertical co-~ordinate

Ek kinetic energy from UI

Ep work carried out by the water in case II

GX(X) norigontal particle acceleration at x

Gz(z) vertical particle acceleration at =z

R the helght of the oncoming water from a line of

symmetry in pressure or the radius of an axisymmetric

mass of water

S hydrodynamic mass-length (depending on z)

S ax  Daximum value of 8 (for z = 0)

54 the length over which GX(X) operationally is said
to drop to O

S mean value of S over z =0 to 3z =R

U horizontal velocity of the hydrodynamic mass (time
dependent)

US U at great distance from the wall (start velocity)

UI horizontal velocity of the waterfront at & = GI

VI generated vertical veloclity when & = %:(z dependent)

v V. at the free water surface (z = R)

I top I

Vm top gernierated maximum vertical velocity in the model case
Vs generated vertical velocity in case II (z dependent)
V5 top V, at the free water surface (z = R)

W_(z) wvertical velocity of the alr particle in the slit at z

o relative content of airbubbles irn the water

B air-regarding coefficient in case II



ep(X>

0, (%)

AT
AI(z)
Ame

AUb1

A-U'b 2

AUm

AUma

AUmab

AU

AUIa

AUy,

)

distance between waterfront and wall (timedependent)
d at maximum presgsure

bat p* = poan Pgpg = 20g4n)

volume of airbubbles per unit cube at x at
pressure = p(X1>

volume of airbubbles per unit cube at x at
pressure = 0

= 3.14159

density of the air at pressure = Potm

density of the water

change in horigontal momentum

AT at =z

horigontal influence from generated vertical velocity
in model case

horigontal influence from genevaled verlical wvelocity
in case T

horizontal influence from gerierated vertical velocity
in case IT

reduction in horigontal velocity of hydrodynamic

mass in model case

AUm from airbubbles or rough waterfront

total reduction in horigomtal velocity of the
waterfront because of airbubbles in model case
reduction in horizontal velocity of the hydrodynamic
mass in case 1

AT from airbubbles or rough waterfront

I
total reduction in horizontal velocity of the

waterfront because of airbubbles in case T



AU

Ap(x)

80464

Aetotl
At
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reduction of horizountal velocity of the hydrodynamic
mass in case II

reduction in ailrbubble volume per unit cube at x
total reduction in airbubble volume per square unit
of the waterfront (time dependent)

for 6= 8

8040t T
duration of the shock



