
CHAPTER IV 

THEORETICAL CALCULATION OF SHOCKFORCES 



ABSTRACT 

The shock pressure that can deve-Lop when a mass of 

water hits a rigid pl.,ane construction (l.,ike a breaking 

'wave hitting a vertical., vral., 1,) is cal.,eul.,ated theoretical., l.,y 

and the resu 1, ts are pres en ted iIi. a graph. The maximum 

pressure dependo orl. the vel.,oci ty of the oncoming water and 

its content of airbubbl.,es. It does not depend on the size 

of the water. When the water approaches the construction 

some of the air j_n betl<l'een is forced out 9 whereby it 

del.,ivers a reactive force of important magnitude? in spite 

of the l.,ow density of the air. This reactive force is 

bal.,ancing the compression that takes pl.,ace for the rest of 

the air. The maximum pressure is then reached boforo tho 

water has touched tho wal.,l.,. As the shock process is 

different in the model., case and in the prototypo case 9 the 

resul.,ts do not fit into Froude's model., scal.,e l.,aw 9 as can 

easil.,y be seen on the graph. 
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Fig.1. Introduction and definition sketch 
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Fig.2. Graph of horizontat particte acceteration 
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INTRODUCTION 

From observations of nature and modet tests it is 

found ptausibte that a wave can approach a rigid watt in a 

dangerous manner tike the one shown on fig.1 teft, giving a 

stit of air between the watt and the waterfront. The air 

starts a batanced adiabatic com~ression and outftow, and 

the catcutations show that the compressibitity of this air 

and the very modest density of the air in the outftow are 

the physicat factors governing the shock process, and that 

the compressibitity of the water is negtigibte. 

The course of the shock can with good approximation 

be divided into two physicat distinct cases. First, when 

the pressure is sti t'l tow, sa~_e~"I, the air i,s regarded 

incompressibte and the pressure is given by the reactive 

force of the air outftow. Second, when the water has moved 

ctoser to the watt and the pressure is getting higher, 

substituted by no outftow and isothermat compression. 

Atthough the formutas are evatuated by tooking at 

the unreatistic case, fig.1 right, the resutts show greater 

usefutness, and water with airbubbtes and a rough waterfront 

is treated. The difficutties in deciding the vetocity of the 

waterfront etc. of a breaking wave is not touched upon. 

Except where otherwise mentioned att the consider-

ations are for a ptane case. 

Att non-dimension-homogenious equations are given in 

trw technica t unit system, in megapond, ]\'Ip, and metres, Ill, 

and seconds, s. For the density of the water is used the 

fresh water term,Q = 0.102 Mp . S2/m4. 
v 



CASE I. INCOMPRESSIBLE AIR 

The idealized case where a mass of water with plane 

vertical front proceeds towards a plane vertical wall as 

shown on fig.1 right will first be considered. The 

horizontal velocity u s of the water is provisionally 

regarded as a constant over the time, t, and over 

(commented after (25)). By this the air between the water 

and the wall is forced out with a velocity IV (z). The 
a 

2 

kinetic energy of the outflow is lost, so that the pressure 

peR) = O. 

As the air for the present is assumed incnmpr(::]ssible 

the usual equation of continllity hoLds~ 

• z = 6 • Vi (z) a 

where 6 is the thickness of the air slit. Remembering that 

6 is timedependent the acceleration of an air-particle is 

deduced from (1)~ 

2 . . z 

Neglecting the gravitational force the vertical 

equilibrium of an air-particle yields the pressure p(z) 

above atmospheric pressure of the air in front of the 

water of~ 

. z 

(2 ) 

(3 ) 
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where Qa is the density of the air at atmospheric pressure, 

Patmo 

Integrating and using peR) = O~ 

p(z) 

The mean value over z becomes: 

2 
pJ,~ = ~"Q 3 a I~2 • c 

For 6 ctose to 0 this formuta yields a fast rise 

(4 ) 

(5 ) 

in pressure. With the absolute pressure being Pabs = p(z) 

+ Patm ' an adiabatic compression of a confined quantity of 

air would only yield : 

Pabs a 

and an isothermal compression: 

1 1 i = constant . ~ = k i . ~ (6 ) 

TRANSITION TO CASE II 

Differentiating tho isothermal expression (6): 

en 



With the absotute pressure in (4) being Pabs u :::: 

p(z) + Patm and differentiating it~ 

By suddenty changing from the outftow formuta (4) to 

the isothermal" formuta (6) at 0:::: or ' where then 

Pabs u :::: Pabs i ' the rise in pressure witt be tess for: 

2 (1 _ P a tm. ) > 1 
Pabs u 

Pabs u > 2 Patm 

P (z) > Patm 

Using the mean-pressure (5) or is found to: 

r) 

2 
u-

R2 p'H- . s . 
Patm :::: .. _Q -0 2 

:::: 

.7 R 

r 

or :::: jr · i-Q-;," . U . R :::: 2.9 . 10-3 • Us • R (m) 
Patm s 

To oreate the compression of the air that actual, "Gy 

has taken ptace up to or with Pabs:::: 2 Patm is needed a 

tittte additional" air. As seen after (50) there witt be 

supptied some extra. 

4 

(8) 

(9) 

( 10) 

( 11 ) 
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For ° < °1 the compression witt be far greater than 

incompressibitity. Because of sufficient thickness of the 

airtayer, and the short duration of the shock the compression 

is adiabatic. This compression combined with the outftow 

witt in case II be treated as an isothermat compression 

after formuta (6). Further reasons for this choice are 

given after (50). So in case II the mean-pressure is: 

2 • 1) t- . o-r a m _ 

When a pressure-distribution is needed it witt be 

chosen as in (4): 

p(z) 3 = ~2 o p~~ 0 (1 -

HYDRODYNAMIC NASS 

Using (3) on water by changing Qa to Qv' the 

density of water, and by (5) and (13) the verticat 

acceteration of the water in the waterfront is found to: 

(12 ) 

(13) 

(14 ) 

A co-ordinatesystem (x,z) moves with U s' u and w being 

the horizonta t and vertica t ve toci ty retll)8cti ve ty , at the 

ptace regarded, the acceteration terms G (x) x 

witt be: 
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GX(X) aU aU u + aU . = -- + . W at oX oZ 

G (z) oW oW + oW • =-+ . u W Z ot oX aZ 

oGX(X) o2u o2u (au) 2 
2 oU oW - = ·~xot' +- . u + + ~ . W + ( 15 ) oX ox2 oX oXoZ Cjz oX 

oGz(z) ri
2W o2w oW aU + 

2 
(ow)2 • o W = ~zot + u + -2 . W + oZ oXoZ oX oZ oZ oZ 

Regarding the waterfront where the timedependent chaJlges are 

so rapid it is justified to retain only the first term in 

and 
oG (z) 
--~z . • After (22) it is shown that 

comparatively small. By the equation of continuity, 

~ + oW 
ax aZ 

it 
= 0 9Yis got: 

Then by differentiating (14): 

_em is 
AX 

Further information about Gx (x) can bp. e:iveYl f-rom LllO 

horizontal dynamic equation: 

( 16) 

(17) 

(18 ) 



As shown on fig. 2 Gx (x) vii"L"L be approximated by 

a parabo"La. A certain degree of inaccuracy in se"Lecting 

the approximative function to G ex) wi"L"L give a "Lower x 
degree of inaccuracy in tb.e \'!an-ced resu"Lt 1 name"Ly 

G (x) f' • For easier ca"Lcu"Lations x is put to 0 in x w 

the waterfront. By "Looking at fig.2 the "Length S1 is 

foemel to; 

Then from (18) ~ 

and from (17) and (13): 

2 
~- - 3 

7 

(19) 

(20) 

(21 ) 

The hydrodynamic mass wi"L"L acce"Lerate with the vlaierfront, 

G (x) . when acted upon by its pressure p(z). So it is x wf ' -

possib"Le to deduce a hydrodynamic :nass-"Length, S, by 

using (20): 



Hereby 

1 
S = 

is derived from (19), (21) and (17)~ 

This expression is in force for both case I and II as the 

(22) 

pressure distI.'ibution is set to tl1C same ('13). Bu·!:; even if 

the pressure distribution is altered somevrhat ~ it j.s seen 

from (13), (14), (17), (21) and (19) that S in (22) ends 

up being close to the same, a-Lthough the intermediate 

resultE1 differ. 

As the velocity 1.1 changes gradually over thc~ dj_stance 

it can be seen that 

The mean value of 

S"I- - II • S - 4- max 

where Smax - S for z - O. 

is comparatively small in (15). 

over z l' r' 0 
00 

. R .- 0.45 . R (23) 

Using meall va 1,.1.1e8 of pressure (5) and hydrodynamic 

mass (23) the change in momentuTl1, 61, of the vrater will be~ 

Q 0 S{r 
v 

0< 1 do p"U· = 

(24 ) 
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where U is the momentary horizontaL veLocity of the water. 

Considering U independent of 0 U = U 9 the mean s 

val,ue of the change in hor'1zontaL vel,ocitY9 6Ur 9 is? 

using (11) and (?::';) ~ 

2 Q U 
R2 4J;r 6UI 

a s = "3" -61 --
Qv Sol- n 

For the design waves of the nature this reductjJ)J'l in the 

(25) 

vel,ocity, U is so smal,l" that it was reasonabl,c to regard 

it as a c ol1stan t , U = U s ? above in (25) and in ( 1 ) • 

Instead of using U = U in dt = .ldo in (24) s U 

it coul,d have been reasonabl,e to use a mean val,ue? 80 

1 U = U - -- . L\U making s 2 I ? 
depending on That 

is done in the graph 1 fig.3. 

Using (14) and (5) the verticaL vel,ocity of the 

waterfront? VI' for 0:::: 01 is found~ 

= 0.89 . ~ R mls 

. z 

co 

(26) 



Th'3 hydrodynamic mas,': (23), can not be used quite 

as usuaLLy in the short duration of the impuLre, because 
-"I' 

vlhen the waterfront has stopped, the back of S-lt is abLe 

to traveL with that horizontaL veLocity, LUb1 that is 

aLLowed by the verticaL veLocity through the equation of 

continuity. 

Instead of using the reaL horizontaL distribution 

of the verticaL veLocity, VI from the waterfront is used 

withz == R V but onLy over the Length of I top , 

In this way LU
b1 

wiLL be: 

j
----------
Qa . Patm == 0.40 mls 

So s* can with stopped waterfront have a mean 
LU

b1 horizon ta L ve Locity of ";T-'~ Compared wi th .6U I in 

(25) that reveaLs: 

0.31 

When 0:--: 01 the impul.segivine; horizontaL velocity 01' the 

waterfront is reduced from U s to: 

where LU Iab == 0 when there are no airbubbLes in the 

water. (see (56)) 

10 

(27) 

(29) 



1 1 

CASE II. COMPRESSIBLE AIR. 

Now the water gets c1,oser to the watt than the sma1,1, 

distance °1 , ~[1he ca1,cu1,ations wi 1, 1 again be performed for 

mean va1ues J so the pressure is as announced in (12)~ 

and the prob1,em is to stop the ve1,ocity U 
I (29) of S7(- (23). 

Moving from °1 to 6 against the pressure p* J the water 

performs a work of: 

6 

L I 

p7< • d 6 

From the horizonta1 ve10city the water has a klnoti~ energy 

of: 

E k 
1 = ~2~ 

Stopping U J aver (;j cal vo loci. Ly lj 2 wi b 1, 1w genera ted 

1,ike in (26). If the vertica1, ve1,ocities cou1d be negtected 

the princip1es of energy coutd be used J whereby the imputse 

woutd be stopped for 

1 Q 0 S~(.. • "2 v . 

DividinB over by 

° == 
I) . 
mJ.n by using 

and changing the 1eft side 

6U2 (30) is changed to an equation of momentum: 

to 
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Q • S":- • AU = ?:=~ [2 • IJ • ° r . 1n 0 r - p (J.: - J.: )\J' 
V D 2 Ur atm 0min atm u r umin 

and by using S"c from (23) ~ 

::: §!2 . 
n 

1 'I 1 
[21n 

or ° . mln . 
Patm 

. or • R • Dr" • 6==:== + -Qv or mln 

Going from (30) to (31) the timedependent ve10city 

distribution in the equation of momentum, (31), 

was decided to be so, that the mean va1ue of U 

and thereby~ 

dt = 2 . do - Ur 
Because the forces inv01ved in braking the horizonta1 

ve10city and generating the vertica1 are the same at any 

wi11 be a constant proportion of D.U 
2 

(31 ) 

I 
1 ! J 

(32) 

(33) 

moment.~ V 2 

(see (35)). Therefore the princip1es of energy are apptiab1e 

using on1y the horizonta1 ve10city, when the inv01ved mass, 

S* , is reduced corresponding1y to the effect of the 

vertica1 ve10cities. So (33) is in force here in the genera1 

case making (32) app1iab1e when consideration to 

done in the usuat manner (tike in (29)) in D.U2 " 

V 2 
is 

The generated verticat vetocity is then got from 

(14) and (33) ~ 



(6 r 
I 

~2J ° . nlln 

13 

With for z = R (34) and (32) are compared: 

~ Z.~o}J == J2Ji __ 1.4 
.6U2 4 

Like in (27) this makes a difference, .6Ub2 , in front 

and back vetocity of S*: 

2 
£2 . .6U2 = 

The imputsegiving vetocity is then: 

.6Ub2 2 
Ur Ur 

'IT .6U == - ~"=2='~~ = - '3~2 
. 

2 

Substituting or with (11) the equation of momentum (32) 

now yietds: 

(35 ) 

(36) 

(37) 
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2 ?!il,- 1 
J;------" U 

U
I f3 (1 + ~2) 

s = . . • . 
Ui' n Qv 

Qa . Patm 

r °1 ° min , U 
[2tn °1 s L 2tn 6-~~C""' + ~-6~=-" 

.- 1 i = 1 . 71 . f3 . rr--' . J ° . min I mln 

(38) 

where f3 = 1 ,when there is ~o content of airbubbtes in 

the water as hitherto, 

Finatty (12) is used to get the wanted maximum mean 

pressure~ 

°1 = 2 • P Cl -. - :Patm cctm 0· mln 
°1 2 = 20.7 . - 10.3 Mp/m (39) 

°min 

]\lODEL CASJ~ 

\{ith tow start vatues of the horizontat vetocity, 

U ,the imputseis over before case II is reached. So U s 

can not be considered constant as in (25). Using (33) 

which is atso in force here, the change in horizontat 

momentum, 6I(Z) , is deduced from the gene rat expressions 

( 22) and (4); 

r ° . mln 

. dt - - J p(z) 
'00 

2 do 
fr~ . 

s 



1 s· 

where as in (29): 

From (40) and (22)= 

(\[1in ( z) = 2J3 
r---------'-"--'--"-

11R2 2 'v 1. ,- Z 

r-- -------- Un 

4 h 10-3 A/')2 2 0 - .J. • v lL - Z • '6Tr~ 

m 

For z...., R ° . (z) -> 0 ? so there is a tendency to mln 

ctosure of the air outtet. 

The mean vatue of 

• R • 

0min (z) (42) over z 

U s = 3.5 • • R • 

l· (""-t /) 
,:) 0 

Like in (26) the generated verticat vetocity for z = R , 

Vm tOIl , is got from (33), (14), (5) and (43): 

r ° . mln 

- ··z Z wf J G ( ) • dt - J 00 

• 1:1 U m 

Just as in (27), (23) then yietds: 

15 

(40) 

(41 ) 

(42) 

(43) 

(44) 

(45) 



Now (41) yi8lds~ 

IIU = 3 U - 6.U 
W m l· s mab 

where 6.U b = 0 ma when there are no airbubbles in the 

water, (see(57». The maximum mean pressure is hereby 

got from (5) and (43): 

Piiiax 

'vlfi t h 6. U rna b = 0 ( 4 7) wi 1, l b e ~ 

Pole 
·max 

For U = 1.9 m/s 
;3 

as found by (39). 

2 ') 2 
Us = 4.0 . U~ (Mp/m ) 

the pressure found by (48) is the same 

DURATION OF THE SHOCK 

16 

(46) 

(47) 

(48) 

Tho rise and fall of the pressure wi -l l be viewed as 

symmetrical, although it is problematic if it is (the air 

outflow shortens the fall, the behind the waterfront 

approaching vlater makes it longer). The duration of the 

shock,6.T , for the prototype will then be defined as the 

time the pressure is more than P Using (11): atm • 

6.T = 2 . 
rQ~­
y.~-~= . R = 1.17 . 10-2 . R (s) 
IPatm 

In the model case 6.T is defined as the time the 

(49) 
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pressure 1 is greater than "16' of the maximum pressure. That 

happens for 6 <4- • 6. (4-3) \lvhereby~ 
illln 

(50) 

CONSIDERATION OJ? NAIN ASSUlVIPTIONS 

Using the assumption that the water att the time 

dl)Ting the shock moves as shoi,tm on fig. 1 right a more 

accurate catcutation can be done. Because of compression 

of the air it witt show a deficiency in pressure at the 

end of case I and the beginning of case II, if there is 

attowed the big outftow as W(R) in (1) gives. But as 

(4-2) shows, the outtet is narrowed, reducing the outflow. 

This again promotes a more uniform verticat pressure 

distribution making the mean pressure usabte from z = 0 

to a-Lmost z = R • For OCGan size waves the pressure at 

the end of case II gets higher than catcutated because of 

the adiabatic compression. But as thG air gets more 

compressed its expansion is first finished outside the 

outtet, making the pressure in the ou-net greater than O. 

This widens the outtet attowing more air to escape. 

If the inftuence of the air in the stit was 

disrGgarded and the pressure from compressible water then 

catcutated, it woutd rcveat about 10 times as high 

pressures. Therefore the compressibitity of the water 

can be disregarded. 

H' ( '7. r- , d ( ). t - th t ~rom ~?) an \11 l can be seen a R changes 

onty about 1% in size before maximum pressure is reached. 
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AIRBUBBL:~;S AND UN,Sll100TH FATERFRONT 

Airbubbtes in the oncoming water near thc waterfront 

witt soften the shock because they witt get compressed. For 

bubbtes up to centimeter size the compression witt be 

isothermat, so it is possibte to use the same formuta as 

in front of the water, (6). With Gx(x) proportionat to 

x 2 (see fig.2), the horizontat pressure distribution 

wheI'e 

'2 

x.J 
1 

x 

The votume of airbubbtes within a unit cube at x is 

catted 8o (x) when there is no pressure, and e (x) when 
]J 

the pressure is p(x
1

). The isothermat compression taw 

then yietds~ 

This gives a reduction, ~8(X) , ln the votume of airbubbtes: 

F t o 1 ~8(x) or prac J.ca J use 8""{X)~ 

. 0 1 
as that agrees weLt for y 

.J 

can be taken as parabotic in x, 

n < pol(. < 2 P Witll an -atm 'atm' 



evenly distributed airbubble content, the relative amount 

at p* = 0 being a, the total reduction, ~8tot, in 

bubble volume by compression at p~r therefore is the 

same as was ~8(X) from the waterfront valid over Soo}r . 
So~ 

19 

(51 ) 

This ~8tot gives a further distance to stop the impulse 

of the water. 

For ocean size U the calculation as usual is s 

divided into case I and case II. For p* - p (51) -- atm 

will be~ 

1 
-- 2' • a G s~~ 

In deciding the change in horizontal velocity, 
t:here 

from the airbubblesYis needed~ 

~u 
Ia 

( 1 2 1 ) S"C _ ~n - - • p • a. A 

2 -atm 

1 
= 2 • (ln2 - ~) • Patm· ~8tot I (52) 

Using d t = ~=~ • cl 0 like in (2 l l-) the same mode of procedure 
s 

gives 



Q • S1t- • 6.U == 2 ("L 2 1 ) 1 • 6.8 v Ia n - '2 • Patm· Us tot I 

6.UIa == ("Ln2 -1) · ~v • Patm • '~s • ex 

there 
In the graph (fig.3)Vis again ("Like at (24)) used a mean 

va"Lue of U instead of Us • 

Because the airbubb"Les operatiolla"Lty can be treated 

tike a reduced amount of air at the waterfront acting the 

isothermat way "Like the air in front of the water in case 

II~ the effect from the bubbtes is simpty inctuded in 

formuta (38) by putting f3 to~ 

==1+...1L-
8/2 

thel'e 
For mode"L size U Y is used (33) so 'lilre in (53) s 

(51) gives~ 

= 4· (tn2 - 1) . 1 • ~ 
Qv s 

• O~ 

J~ + p Pillax .. a-i:;m 

20 

(53) 

(54) 

(55) 

Like in (26) and (44) a verticat vetocity is created. Its 

effect is as in (28) and (45) which~ as expected 9 are of the 

same size except for the minor difference induced by taking 

mean vatues at different states of the evaluation. Using 

~ as in (45) (53) and (55) gives the velocity reducing 

sizes 6.UIa,b and 6.U to be used in (29) and (46) ~ mab 

• ex (56) 



f:, U j rna,) 
1 
U-s 

.. ..........-- • a 

If there are bubbtes onty by the waterfront the 

sum of them is 1':'egarded as ex· S-l~ in (51). Any roughness 

of the ':raterfront is t1':'eatediirtl1.e same way_ 

Whe~ air gets into the water its density, Qv' 

becom.ef~1ov[er • 

EXPLAIifATION TO THE GRAPH, FIG.3 

21 

(57) 

In the graph U is the horizontat vetocity in metres 

per seconcLs of the oncoming waterfront, and P is the 

maximum shock pressure in megaponds per square metres. 

ex refers to airbubbtes as mentioned by formu'la (51). 

THE CUBIC OR AXISYJVllvIETRIC CASE 

The formutas for the axisymmetric case are deduced in 

the same marmer as for the p1ane case 0 Now R is the radius 

of a cytinder of water. The main formutas are chsmged to 

the fottowing for water without airbubbtes~ 

(23) witt be~ 

2 

'5/6-
, R 

1.55· 10-3 • Us· R (m) 

= 0.27 . R 

(58) 

(59) 



(29) witt be: 

l----------
u Us 

~- 1 ,[g-- 1 
jQa 

:= . - • Qa 0 Patm - 3 . • Patm I 8 Qv Qv 

:= Us - 0.75 (m/s) 

As this is a smatter reduction in vetocity than in the 

ptane case it is understood that the modet shock pressure 

here is greater. 

(38) witt be: 

16 1 1 
U I := (1 + 27) • 3JE • Q v • p a tm 0 0 I 0 R 1 [ °1 DI 0 2tn -0 -_-

mln 

6 . _ 
mln - 1 J + -~ := 

u 
s [ ~~__ °min l 1 .83 • -U .. 2tn -~-- + ~- - 1 J 
r 0. or mln 

22 

(60) 

(61 ) 

Elor the prototype case this formuta tends to giv-e a smatter 

pressure than in the ptane case. 

CONCLUSION 

A tthough the forHlul,as arc Cva.l,11at01l for LhB j n0.R. U !7.ml 

case in fig.1 right, the finat formutas (38) and (48) reveat 

that the maximum pressure depends onty on the vetocity of 

the oncoming waterfront 9 Us 9 and not on its size, R. 

As the parattet waterfront seems to be the most dangerous 

case for the ptane watt, what is found here is the highest 
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possibte pressure. It witt then be reached when a watt is hit 

by a mass of water of any shape 9 for instance just the top of 

a wave? or even onty a drop of water. Then R is the size of 

the water from the tine of symmetry in pressure. 

But the described pressure witt usuatty onty affect 

an infinitesimat area? with much tess pressures around? 

mak.ing it so difficutt to decide a design pressure? atso 

because the invotved amount of airbubbtes often is UYlknown, 

The watt hit by the water does not need to be verticat 

for the use of the formutas. 

NOTATION 

l-c i (= Patm 0 oIL a constant in isothermat compression 

tn naturat togarithme 

p (x1 ) pressure above Patm in the water at x 1 

p (z) pressure above 0 
~ atm in the waterfront at 

Pabs absotute pressure (inc tuding Patm) 

Pabs a Pabs after adiabatic compression 

Pabs i Pabs after isothermat compression 

Pabs Pabs after the outftow formuta u 

Patm atmospheric pressure 

pot mean vatue of p(z) over z = 0 to z = R 

(time dependent) 

P~ax maximum vatue of p-J~. (the shock. pressure) 

t time 

u horizontat particte vetocity 

w verticat particte vetocity 

z 

wf (as index) stating that the size is at the waterfront 



x horizontal co-ordinate 

x 1 horizontal co-ordinate 

z vertical co-·ordinate 

kinetic energy from U I 

E work carried out by the water in case II 
p 

Gx(x) i:lOrizonta-L particle acoeleration at x 

G (z) vertical particle aoceleration at z z 

R the height of the oncoming water from a -Line of 
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symmetry in pressure or the radius of alI axisymmQtric 

mass of water 

S hydrodynamic mass-length (depending on z) 

S 
m8X 

S 1 

maximum value of S (for z = 0) 

the length over which Gx(x) operationalOLy is said 

to drop to 0 

S1!- mean value of S over z = 0 to z == R 

U horizontal, velocity of the hydrodynamic mass (time 

dependent) 

U U (",l,t great distance from the wall (start velocity) s 

UI horizontal velocity of the waterfront at 6 = 61 

VI generated verticaL velocity when 6:::;: Or (z dependent) 

VI top VI at the free water surface (z = R) 

V generated maximum vertical velocity in the model CEl,se m top 

V2 generated verticaL velocity in case II (z dependent) 

V2 top V2 at the free water surface (z == R) 

Wa(z) vertical velocity of the air particLe in the sLit at z 

a relative content of airbubbLes in the water 

S air-regarding coefficient in case II 
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6 distance between waterfront and wal., 1, (time dependent) 

° . mJ.ll 
6 at maximum pressure 

°1 ° at p* = Patm (Pabs = 2Patm) 

e (x) vol.,ume of airbubbl.,es per unit cube at x at 
p 

pressure = p(x1 ) 

8o (x) vol.,ume of airbubbl.,es per unit cube at x at 

pressure = 0 

IT = 3.14159 

Qa density of the air at pressure = Patm 

Qv density of the water 

L),I change in horizontal., momentum 

L),I(z) L),I at z 

L),U 
bm horizontal., infl.,uence from generated vertical., vel.,ocity 

in model., case 

horizontal inilueno8 fl'um gf'>I1(H'aleu vt;'L'LiCHl velocity 

in case I 

horizontal., influence from generated vertical., ve-loci ty 

in case II 

L),U reduction in horizonta"1 vel.,oci ty of hydrodynamic 
m 

L),Uma L),Um from airbubbl.,es or rough waterfront 

AU b total reduction in horizontal., velocity of the 
U ma 

waterfront because of airbubbles in model., case 

L),UI reduction in horizontal velocity of the hydrodynamic 

mass in case I 

L),UI from airbubbles or rough waterfront 

L),UIab total., reduction in horizontal., vel.,ocity of the 

waterfront because of airbubbl.,es in case I 
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6U2 reduction of horizontal velocity of the hydrodynamic 

mass in case II 

68 (x) reduction in airbubble volume per urdt cube at x 

68 tot total reduct:Lon in airbubbLe volume per square unit 

of the waterfront (time dependent) 

6S tOtI 68 tot for 0= °1 

6~ duration of the shock 


