4
CHAPTER VII 743

PROGRESSIVE AND STANDING SECOND ORDER SINUSOIDAL WAVES

ABSTRACTS

In this chapter the basic method applied to give the first
order waveg of chapter IV and Vwill be expanded to give alsgso different
types of the sinusoidal waves of second order,

The second order waves on arbitrary depth will be more com-
plicated than the second order deep water waves found in chapter VI,
The wave is not assumed to be irrotational, but if at the end the
rotation is set equal to zero the wave will be the same as the Stokesg’

second order wave, as far as the surface profile is concerned.

INTRODUCTION

During the development of the theory for the first order waves
of chapters IV and V we had to neglect some terms. In chapter VI we
saw for deep water waves that we could improve the theory rather much
by including the second order terms. So we will also do that here. The
progressive wave can be found more easy alone, but we saw in chapter
V that with little extra work we can as well find both the progressive

and the standing wave at the same time.
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We consider two dimensional gravity waves on water with

horizontal bottom.,
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Fig. 1. Definition sketch

From the definition sketch we see that
g: D+Q

and we find the equation of continuity

R

q = q(x,t) is the discharge through a vertical, x

<

(1)

(2)

is the horizontal

co-ordinate,t is the time,c 1s the wave celerity, y = y(x,t) the

actual water depth, and 9 = ?(X,t) is the surface elevation, D is

the mean water depth.

q can also be found by the integration of

quc@ dz.

u

(3)
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The distribution of u over a vertical is an unknown function,
f(x,z,t). =z 1s the vertical coordinate with 2z = o at the bottom.
We will here express Tf(x,z,t) as a series of hyperbolic function,

s0 we write

- - R. cosh Rz
uhz%&ginh Ry (4)

where R in the beginning is considered a constant with the dimension
of a reciprocal length. We will then investigate one of the terms of

€qe 4.

} cosh R=_
(’L"qu sinh Ry (5)

From chapter IV we know that this term alone will give us the
first order theory with R=2n/L, I Dbeing the wave length. But we
must not forget eq. 4. For the deep water wave in chapter VI it was
possible to use the expregsion corresponding to eg. 5 also to find
second order waves. For the waves on arbitrary depth of this chapter
here it will not be quite so easy. BEven for the second order sinus-
oldal wave it will be necessary to use eq. 4 with two different terms,
and for the third order sinusocidal theory, eq. 4 will be involved
with several different terms. This is though not so difficult as it
sounds, because it all comes out automatically, it is felt, of a
theory based on only eq. 5.

For the second order cnoidal wave of chapter IX eqg. 5 alone
will be satisfactory, which is a big advantage, but then R turns
out to be a function of . The hyperbolic form in eq. 4 for f(x,z,t)
has of course been chosen because it is convenient. The hyperbolic
form is known from experiments, from the classical Airy theory, and
from chapters IV and ¥, At the infinite depth limit it will give the
exponential form, known from chapter VI.

Using the equation of continuity

OW_ _ oM
a“é/“ Ox (6)

and w = o at the bottom, =z = o, and eq. 2 the vertical particle
velocity w = w(x,z,t) is found from eq. 5 to

_ dn sinh Rz d coth Ry sinh Rz
Y5 Sinh Ry * afg R sinm Ry (7)
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The horizontal particle acceleration GX = GX(X,z,t) ig now

found from egs., 4 and 7

- du - oy U QU . 29.p cosh Rz
CYX“‘ dt ~ OF ""/Lax WS T a?”r\’ sinh Ry

*‘i%% p? cosh Ry 2cosh Rz +1 - on 3 cotih Ry
Sinh Qﬂ sinh F\)% (8)

In eq. 8 the three terms are of different magnitude. g% is
small of first order, q%%R of second order and q2§%R of third
order. Comparison of the magnitudes of the different terms can be
made with the solutions obtained later. The third order terms will
here be considered negligible, so that e.g. the last term in eq. 8
will be neglected.

The vertical particle acceleration GZ = GZ(X,z,t) is found

in the same way as eq. 8 by

G = dw - Ow  OW  \y, O

T ot T ot OX 0z (9)
The vertical dynamic equation for a frictionless fluid,
9) -
*ag %)9““" ?GZ (10)

where o and g are the unitmass and the acceleration of gravity,

is used together with p = o at the surface =z = vy, to obtain an

expression for the pressur2e b = p(x,2,t)
B=y—z+ {@ é_ cosh 'ig—é;osh Rz
+[._(%Q)2+ gti %VZ +q$ t] coth Rus[l;o}fhéj cosh Rz ]
l’(gg)z Q Jf coshsffgszzoshZ/?z} 1)

where again third and higher order terms are neglected. By differenta-

tion of eq. 11 an expression for %ﬁ' is found. Through the horizontal

dynamic equation

—_§§%*: S)Gi (12)

2p

an alternative expression for 3y is found.
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Eliminating %E from the two equations a wave equation of second

order is derived

0 @310 cosh QJ-COSM Rz _6 cosh Rz

on d fele} %
+5—?s5z%”*{25‘¥ dt éxgt+ 5t S x‘z”“%xzatt]

coth Ry [cosh Ry —coshRz] _ q Op 2 cosh Ry cosnRz + 1
SWW)Q% @t SMMZR%

dg { cosh 2Ry ~cosh 2R
"‘[a?_éﬁ? OwlaXS] = SIV)V(;{ Qj ==0 (13)

FIRST ORDER SOLUTION

Eg. 13 can be used to find sinusoidal solutions of first and
second order for progressive and standing waves., To find the Tirst
order solutions we neglect the second order terms in eq. 13, so the

wave equation will reduce to

g9 + 53 1 cosh Ry—coshRz 5 F? oS Rz _
Jok T sinh Ry sinhRy (14)

We will here shortly give the Ffirst order solutions already found in

chapters IV and V.
By the use of eq. 1 coth Ry can be expanded as

coth Ry = cotm%(D%—Q ~ coth QD“TE%?J—) (15)

so that in eq. 14 we can make the substitution coth Ry ¢ coth RD.
Eq. 14 is then differentiated with respect to x and eq. 2 is used
to eliminate g. This equation is then split into two equations, one

equation of the z-dependent terms

o' 1 coshRz . np.coshPz - o
Ox*0t R sinh Ry ()fQ sinh Ry

and one equatlon of the z-independent terms

0%
9@%?_ @detz COth Q D= O

(16)

(17)
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and we then want these two equations to be fulfilled simultaneously.

One such solution is the wellknown first order progressive wave

(Z:VZ4 = %COS k(X—Ct> with Q: k ~ —%7: (18)

c:%——:ﬁgtamh kD (19)

with a solution to q that fulfils eq. 2
q=91= CQ:/C—EI—COS K(x-ct) (20}

Bgs. 18, 19, and 20 are seen to fulfil eq. 14.
Another solution to egs. 16 and 17 is the first order stand-

ing wave

{
@ =L=/BtanhkD (22)

and fulfilling eq. 2

. — H | ‘
q=9=4 %(Qsm wt sin kx (23)

i

Q“‘: %COS wl cos kX with R=k= %T (21)

We can now make an approximate evaluation of the magnitude of
the terms in eq. 13 by insertion of the first order solutions for n

and ¢, to see if the second order terms are negligible. We compare

2
3 g% éi t with g%R using eqs. 18, 19, and 20 and get

3%%/%& = 37TiL[cos K(X—ct) (24)

From this is seen that H/L must then be unrealistically small for
this second order term to be negligible. Comparison of two other
terms in eq. 13 or in eq. 15 would demand also H/D to be small.
Hence it would be of interest to develop a more satisfactory theory,

as attempted later,
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SECOND ORDER PROGRESSIVE SOLUTION

Now the whole second order wave equation, eg. 13 is used,
with the hope of making a better theory.

For a progressive wave of permanent form we have

29 020 o5

q:crz (26)

Like for the deep water wave in chapter VI we can expect a solution

and

of the type

=0t (27)

q (28)

1t
o)
—
+
Ne
N

where 2 and q, are the already given first order expressions egs. 18
ar.l 20, 9 and s are second order correction terms to be found. It
is seen that when substituting " and q from egs. 27 and 28 into the
wave equation, eq. 13, the unknown 75 and a5 will give only third
and fourth order contributions in the second order terms of eqg 13,
go that the second order terms of eq. 13 can be substituted only
with 1 and Ay s the first order solutions of eqs. 18 and 20. The

equation is then split into a z-~dependent equation

o2 O3 1 @5%@2 o2 6?‘? R cosh Rz _
© 0% R smh@g sinh Ry —

- bt { E k®coth kD 'ggf iz sin 2k (x-ct) (29)

and a z-independent equation

g%% ol gjfg.—écoth Ry =

02(13—_)2k3[4 coth®keD—1]sin Zkix-ct) (o)
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Let us first consider eq. 29. Substituting eq. 27 with 4 from eq. 18
into eq. 29 we get

b?)y?g Ni‘_ cosh Rz émg R C@gh Q& -
Ox® R Sfyy%yé%g (ﬁ}& §!V§Vﬁ§§% -

- 3[4 } k> coth kD gﬁfig sin 2k (X-et) 1)

because ?1 with R = k was a solution to the left side alone. (This
was gimply how 94 originally was found).

Another solution to the left side alone of eq. 31 would be

72 ~ cos R(x - ct) (32)

for any R. Eq. 32 will be used in a moment. A solution that takes
care of the right side of eg. 31 is now of interest. On the left side
we have the variable cosh Rz and on the right side cosh kz. This can

only be fulfilled for any z for R = k. We then get the solution
— (H\* k _ , -
N0 = (B) 5 coth kD cos Zk(x—¢8) wan  R=k

We then turn our attension to eq. 30. Besides ?2a we may have any

solution of the type shown in eq. 32, let us call it ?2b’ S0

= Tt Naat N (34)
coth Ry is substituted by eq. 15, and substituting # in eq.30 by
€d. 34, using eqs. 18 and 33, we get

g%%zﬁ + @2%%‘2&% coth RD =

(35)

Because of 2k in the argument of sin on the right side, R in eq. 32
must be R = 2k, so we get for ?2b

e = () k% cosZk (X—ct)  with R=2k  (36)
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In eqg. 35 we used ¢ from eqg. 19, which gives

We could instead have proposed

%5: = k coth kD + o kff (38)

so that the celerity would depend on the wave height. But such a
proposal would demand a second order term on the right side of eqg. 3o
containing sin k(x - c¢t)., So we end up with only eq. 37.

We have then found the solution for the progressive second
order wave, eq. 34 with eqgs. 18, 33 and 36,

When describing only the surface profile 72a and ?Qb can as
well be combined into one expregsion, QZ' But thig may not be practic-
al, because R ig different for g and %5y, This must be remembered

2a 2b
when going back to get the second order values of u, w, and p from
eqs 5, 7, and 11, With eqgs. 5, 26, 34, 18, 33, and 36 u will be
u,_c{ coshkz k_gosb KZ o 2k CoshZkz cosh2kz

h 17 sinh ky V/m Sinh ky O sthkg (39)

w and p are written likewise, see the appendix. Eq. 39 is illustrated

in fig. 2.

The solution eq. 34 is reasonable for deep water. But for
more shallow water QZb in eq. 36 does not seem to be a reagonable
second order correction to the first order wave because ’the small
QZb becomes so big’. Instead of having second order waves on top of
a first order wave it is possgible to get a solution where the first

order wave is deformed by a second order correction term in the argu-

ment of the cosine function

[/2 = WEL COS(R(X*/Ct)—“O('g;%) ‘f‘ AD (40)

L .
AD is determined from the definition of the mean water level, f?dx::oo
0

o is found to

o=k coth kD |1+ 'éz’zmimJ (41)
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Horizontal velocity profile in a second order sinusoidal

wave, The surface profile consists of = Q1 + Qza + sz
giving q = a, + q2a +q2b° u1 and u2a are vertically
distributed as cosh kz, while wu,. is distributed as cosh 2kz,
If a cosh Rz expression is written for the final u, then R
must be a variable, so that R for the crest is between k and
2k, and R for the trough is less than k. It seems ag if

R = R(kz), ( leading to the cnoidal wave of chapter IX).




753

Within the frames of a second order theory the first order

expregssion for g% can be substituted into eq. 40 to give

~ i
=7 cos Q, +4D <.42),
with
6 = k (x~ct)+d 4 sinBs (43)

The solutions egs. 34, 40, and 42, show that a second order
wave can be many things. They all fulfil the wave equation, eq. 12,
to the same degree of approximation. But they give different surface
profiles, because they have different ways of including ’hidden’
higher order terms. But none of the solutions are good for more shallow
water. So it will be appropriate to propose still another second order
solution : the cnoidal wave on arbitrary depth. In mathematical re-
spects 1t will be of the same degree of approximation as other second
order solutions. But in practical respects it will be significantly

better. (See chapter IX)

/‘fm’&%% “ .
o Sy
x\ \\\N&% ffwwk\\xkx

Aoz
Xz*—“&O L ﬁéﬁ@;@%

Fig. 3 The second order ’argument waveé can only ’flatten the trough®

to a certain point, when d%/Jx” in the trough gets to be = o,
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SECOND ORDER STANDING SOLUTION

The solution to the standing wave is found in a similar way
as the above progressive golution, so we will make this more short,
We expect solutions of the type given in eqs. 27 and 28. The first
order solutions 74 and a from eqs. 21 arnd é} are substituted into
the second order wave equation, eq.13.

The Zédependent equation for ?2, corresponding to eq. 31
will then be

9°nNe 1 wshRz @QzQ cosh Rz
ox0t? R simh Ry ot ™ sinh Ry

N :
3%% w? Kk ooth kD -SL28Z. cos cot sinkx  (44)

3

The term %;aﬁz can through eq. 2 be substituted by

We then find the solution

_9%qs
onept’

2 .
92 = Gza = (1) F2 coth kD sin2eot SIN 2k Xwith Rek (45)
Corresponding to A, WE have through eq., 2
2
Naa = @%} % coth kD cos 2wt cos 2kx with R=K (46)

Like for the progressive wave we then consider the z-independent

equation. Corresponding to eq. 36 we then find the solution

_ (W k 1+ coth®*kD cosZeot]
Nop = (%) Z?Hmh kD + -+ sinh 2kd

cos Zkx with R = 2k (47)

and through eq. 2

2 . .
9ae = (1 o Sin 200t sinZkx

with R=2ZkK  (48)
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final solution for ? for the standing wave is then

0=+ et Naw o)

for g

Q=qi+q2a +92b (50)

49 and 50 could now be tested in the second order wave equation,

13.

The horizontal particle velocity u for the standing wave

is then found from eq. 5 %o

cosh Zk=.

U= 91 sinhZky (51

where Ays Qoo and 4oy, are substituted from eqs. 23, 45, and 48.

The

2qs.

important thing to remember is that R = 2k in the last term,
The expressions for w and p are found in the same way from
7 and 11,

It is also possible for the standing wave to find a solution

with the second order correction term in the argument, like eqgs. 4o

and

42,

n=4cos6, cos + Np+ AD (52)

where AD is determined from the definition of the mean water level,

L
i}?dx = 0, and where @t° @X, and ?p are

6, = it + oy St cosky (53)
O = kx + o4 cos ot sinkx (54)

Np = é%)z% coth 2kD cos2kx (55)

o« is the same as found for the progressive wave in €g. 41

A = KCD&WRBE“{“{“%WWJ (56)
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g is found to

- L ¢, X
q - “%;f;: SN ®t SIV?@x (57)

The above standing wave is described more in detail by the author in

1975,

X

The standing second order sinusoidal wave with the correction
in the argument, eq. 52. The influence of the vertical accele-
ration on the pressure on the vertical wall can be so big in

a second order wave that the pressure below the crest, near
the bottom will be negative, which is also known from experi-
ments. But the sinusoidal second order theory may for higher
waves give unreasonable big negative pressures, as well for

the traditional theories ags for the theory of this chapter.
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APPENDIX I

FINAL FORMULAS FOR PROGRESSIVE AND STANDING SECOND ORDER
SINUSOIDAL WAVES

L/T, u, w, and p can be written with the same expressions for

both the progressive and the standing wave.

K = .,,,w (58)
0o = m%g;f (59)
€=+ = 2 =\ Tianh kD (60)
L= Ui +itgy =Ge +g2a)k SR

+ Qab 2K g?ﬁﬁ gi‘z (61)
W= W+ W +Wh,, = [ ?{%ﬁ“ﬁ%

1 1 cosh Ky ~cosh kz.
Nop, 1 cosh 2ky — Q@SQRZ
sinh 2ky

3 290 00 9 e

mgh ky ~coshkz
sinh ky
K )2 1 @2%] cosh 2ky — cosh 2k = 659
Ci (§><2 ‘S[Vﬁ@ﬁzéﬁgﬁ J
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PROGRESSIVE WAVE

N = N+ N2a+Nap = 4 oSk (X=CL)
+ ﬁzﬁ coth kD cos 2k (X~ct)
""‘? 2) ¢ R cos 2k (X—ct) (64)

4= gi+QaatQob = C (y‘?ﬁmqmﬁ%@) (65)

STANDING WAVE
N= N+ NaatNop= %cos wt coslkx
+(H) & coth kD cos 2t cos Zkx

“%“(%)zgltmh KD + Jx8 coth?kD mﬁgwtlmSka

sinh 2kD
(66)
9= Qu+qea+qeb =L sinct sinkx
+ ) L coth kD sin 2et SN 2kX
.,iiz,g?;ﬁ; coth kb ‘ ‘ 6
*‘”(z} 7 O S onp S 2wt sinZkx o)

The ’argument wave’ is given in eqs. 40, 41, and 42 for the

progressive wave, and in eqgs. 52, 53, 54, 55, 56, and 57 for

the standing wave.
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APPENDIX 1II J

NUMERICAL EXAMPLE
Let us consider the progressive wave with the period, wave
height, and mean water depth given as, (the same wave as used in

chapter IV)
T = 10 seconds; H = 6 metres; D = 1o metres. (68)
We find
2

- 2 -— e —
L= 1" = 1,56 ¢ 10" = 156m (69)

The tables for Airy waves give
L=93m (70)

The wave profile can then be calculated to give the following maxi-

mum values

Q04 1 H

<7ff’crest =5 m 1 coth kD = 0.18 (71)

1 3 H coth kD

( crest ~ 4 * T sinhlkD - 0.49 (72)
1

? - ?1+ ?m ?ﬁ@

W i i

Fig. 5. The wave profile for the realistic example of thig appendix,
according to the second order theory of this chapter (or
according to Stokes’ theory). We see that we can hardly use
this profile and should try to find a better theory,
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STOKES® THEORY

We will here show that the second order sinusoidal theory of
this chapter for irrotational motion is identical within usual second
order approximations with the classical Stokes® theory.

The surface profile is given by eq. 64 and we gee right away
that this expression is identical with the Stokes’ expression,

For u, w, and p 1t is necessary with somewhat longer con-
siderations,

. +
The Stokes’ expressionsg for wu, w, and p are

H  cosh kg 3 2,2 cosh 2kgz
U= e ok Ginn kp ©0% @ T 7 ¢ B g p °08 20
_ % . H2k2 COESDKD (73)
H  sinh kz . _ 3. 2,2 siﬁh 2kz .
W= - ook T 1m0 - T o Bk (T gp stn 28 (T4)
._l_
p  H cosh kz 1 cosh 2kz cos 20
Y = 2 cosh kp °°% ® * 3 i L3 sinh 2kD sinh 2kD
1 .2, cosh 2kz -~ 1
- g E Toinn 2D (75)

The expression for u depends on the second order rotation.
This is considered in chapter IX appendix II, in eqgs. 54 and 55.
For irrotational waves we have §= 1/2, and then u will be, using
also eq. 61, 65, and 64,
2

H cosh kz 0.2 5 cosgh kz
U= c 3 k sioh ky cos O + c( ) coth kD EEEE—Eg'Cos 26
2 3.2 coth kD cogh 2kz
t el 5) oK Sint2kD sinh 2ky 0% °®
+ c(H)2 L2 cotn xp [ Qo8B Kz 1 (76)

2 ginh kD kD

We get
sinh ky = sinh k(D+%) = sinh kD cosh kytcosh kD sinh ky (77)
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The coefficient from the first term in eq. 76 can in a second order

theory be approximated to

1 1 1 1
sinh ky = sinh KD 1+ky cobh kD - sinh kD (1-ky coth kD) (78)

Then we get from eq. 76

H cogh kz _ . H . cosh kz
¢ 5k Sonky ©0° @ =¢ 5k STy o8 @
H.2. 2 cosh k= 2
- 0(2) k~ coth kD ~ion kD ©°° 8 (79)
With
2 ]
cos @ = 5 (cos 2@ + 1) (80)

We then see that eq. 76 and eq. 73 as wanted are identical within
second order, using y = D in second order terms.

w and p do not depend on the rotation of second order mag-
nitude, so they are given by egs. 62 and 63 with eq. 64. Using eq.78
we will again find that they within second order are identical with
eqgs. 74 and T75.

The standing wave could be congidered in the same way. The
standing wave of this chapter will be found to be irrotational. In
the same way as for the progressive wave its rotations can be changed,

if wanted.
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