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CHAPTER V

STANDING FIRST ORDER WAVE AND WAVE PRESSURE

ABSTRACTS

In the preceding chapter we found the progressive first order
wave. A different type of wave is the standing wave, which is import-
ant in connection with placing constructions. A vertical face break-
water will reflect incoming waves, and a system of standing waves
will result. With incoming regular two dimensional waves and the
vertical wall placed parallel to the wave fronts the resulting stand-
ing waves will be two-dimensional. We will consider those waves here.
Solutions of different orders are given in the literature, but it is
felt that even the first order solution can be made better. The
classical first order solution is made by adding two identical Pro-
gressive waves that travel against one another, the incoming wave and
the reflected wave. This is a fast and logical way to get all neceg-
sary formulas.

We will here find the regular standing wave of first order
by solving the basic hydrodynamic equations, like we did in chapter
IV for the progressive wave. We will make the hydrodynamic problem
more general and in this way we get both the progressive and the
standing wave as solutions. The calculations here are Just a little

more complicated than for the progressive wave in chapter IV,
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BASIC EQUATIONS
We consider two dimensional non stationary movement in
incompressible frictionless water without surface tension. The bottom

is horizontal,
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Fig. 1. Definition sketch.
It will be examined, what type of hydrodynamic motion we have
when the vertical distribution of the horizontal velocity is
hyperbolic cosine,

With the discharge q = q(x,t) through a vertical, y = y(x,t) the
actual water depth, and M = W (x,t) the surface elevation, the equa-

tion of continuity will give

99 _ _dy _ _ or
3x ~ a8t T 7 6% (1)

and we have

y=D+n (2)

where D i1s the mean depth.,
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The vertical coordinate is 2z with 2z = o at the bottom.
For the progressive wave of constant form we could integrate eq. 1
to find an expression for g (eq. 4 in chapter IV). But this is not
poseible this time.

The horizontal particle velocity u = u(x,z,t) is integrated

over a vertical to find ¢

q = fgu dz (3)

Also this time we can expect u to have a cosh-distribution, so to
fulfil eq. 3 we write

cosh Rz

sinh Ry (4)
R is an unknown constant, which like before will be found to be

R = 2n/L in eq. 23. In a later chapter it will be shown how eq. 4
can be used in an arbitrary distribution of u . Here we only need
to say : find the type of hydrodynamic problems that gives a u as
given in eq. 4. It then ’happens so’ that we rather easy get the
standing and progressive wave solutions of eqs. 21 and 27,

u in eqg. 4 is differentiated, using eq. 2

odu &g , cosh Rg 2 coth Ry cosh Rz @
ox ~ Ox ' sinh Ry ¢ R sinh Ry éig (5)

The local equation of continuity

ou  Qw

ox " dz = ° (6)

gives the vertical particle velocity w = w(x,z,t) by integration

with the condition w = o at the bottom 2z = o

On sinh Rz o coth Ry sinh Rz
"= ggsinh Ry © 4 &?’R sinh Ry (7)

In chapter IV we found the similar expression for the progressive
wave in eq. 12. We then found that the last term in eq. 7 was small

of second order compared to the first term, which is of first order.
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Here eq. 7 is more general as it will also lead to the standing wave,
but the same considerations can be made. This can best be done using
the solutions found later in egs. 21 and 26 or 27 and 30.

So in a first order theory we can neglect the last term in

eq. 7 and we get

9n sinh Rz
= 9t sinh Ry (8)

Together with eq. 4 this gives for the horizontal particle accelera-

tion GX = GX(X,z,t)

du  3u du du 0 cosh Rz
GX T at " oet * U‘B W ¥z 5% R Sion Ry sinh Ry (9)
The vertical particle acceleration GZ = GZ(X,z,t) will be
2
dw  dw ow w ® Q sinh Rz (10)

Gz =3t ot T Yox TV dz T 9 sinh Ry

The vertical dynamic equation is
©eg = §G, (11)

where p = p(x,z,t) 1is the pressure, g the acceleration of gravity,

and g the unit mass of the water.

p 1s found by integration of eq. 11 with eq. To, and with

the boundary condition p = o at the surface =z =y

P _ . 1 8*p 1 cosh Ry - cosh Rz
' y z g O R sinh Ry (12)

where vy is the unit weight, so vy = 9 g. By differentiation we find

an expression for the horizontal pressure gradient

10p _ QQ 1 93 1 cosh Ry - cosh Rg
Y 0x  OxX g O0xot* R sinh Ry

(13)

where we used eq. 2.

The horizontal dynamic equation
§GX (14)

gives with eq. 9 another expression for Op/Bx

9g ,, cosh Rz

5t © Sinh Ry (15)

14

1 1
Y g
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Egs. 13 and 15 are combined to give the first order wave

equation
3 1 % 1 cosh Ry - cosh Rz 1 2g cosh Rz
5% * g oxot? R ginh Ry * g 9t R gsinh Ry © (16)

This equation is solved in the same way as explained in chapter II
and IV, From eq. 16 we make a z-dependent equation

1 2%y 1 cosh Rz . 124 p cosh Rz o (17)
g 0xdt* R ginh Ry = g ot sinh Ry ~

and a z-independent equation
3
a,,iégl _
g% + z 9x0% R coth RD = o (18)

Here we usedthatin a first order theory we can neglect ﬂ in

coth Ry = coth R(D +¥?) = coth RD (19)

ag shown in eq. 24 in chapter IV.Eq. 17 is differentiated with respect

to x and eq. 1 is used

5o (358) + A - o (20)
Eg20 gives an expression for @37%t2 and further for n containing a
harmonic function and arbitrary functions.

Eq. 18 gives an expression for bq/@)c and further for Y
containing a harmonic function and an arbitrary function.,

Comparing the two solutions for vz we end up with only the

harmonic solution.

STANDING WAVE SOLUTION

We get, as one possible solution

il

Q % cos @t cos Rx (21)
with

VY g R tanh B D (22)

£
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Fig. 2., Definition sketch for standing wave.

R is decided geometrically by eq. 21 to

2T

R = —=—
L

= k

where L 1s the wave length.

In the same way ¢v is found to

2T

w =T

where T dig the wave periocd. Egs. 24, 23, and 22 give

= § tanh kD
k

Bg. 1 tlen gives the solution for g

@
k

=N

- gin et gin kx

o
i
v fas
SN

with g = o at the vertical wall, x = 0.

The solutions eqs., 21 -~ 26 give us the wanted regular

standing wave of first order.
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PROGRESSIVE WAVE SOLUTION

From eqgs. 20 and 18 we can also get the solution for the

progregsive wave

N= % cog R(x - ct) (27)
with

R:%:k (28)

ol Emw 20

a=cy = g % cos k(x - ct) (30)

The progressive wave was considered in chapter IV so here we

concentrate on the standing wave.
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FORMULAS OF THE FIRST ORDER STANDING WAVE

?-= % cos et cos kx (31>
27
_2n 2
ko= & (32)
2n
W= "5 (33)
2. L B tamn w0 (34)
k T k )
q = B L sin et sin kx (35)
2 T
cosh kz
=k Gy (58)
_ 9q sinh kz
YT 3% sinh ky (37)
gj?.= - gw sin et cos kx (38)
D _ 1 3zn 1 cosh ky - cosh kz
y T TR g ek sinh ky (39)

2
?—3—2 :“”@325’2 (40)

using eq. 34 the pressure of €q. 39 can be written

L_ ., _ planh kD _ cosh kz
v I z ? tanh ky L cosh ky . (41)

Eg. 1o gives the vertical acceleration at the surface z

1
e

az
G o = 5{2 (42)

Then eq. 39 can be written

L _ . Gezs 1 cos Ry - cosh Rz
Y-;y zZ + — , (43)

sinh Ry
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Egs. 41 and 43 for the pressure of the standing wave are seen to be
the same as eqs. 38 and 48 of chapter IV for the pressure of the
progressive wave.,

Eg. 93 in chapter IV can also be used for the standing wave,

under the same considerations as made then.
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Fig. 3, The pressure on the wall, below the maximum crest, at the
mean water level where the maximum wave pressure is exerted.
Comparison of the first order theory of this chapter with the
Alry theory. It is seen that the vertical acceleration can
give a substantiel reduction of the hydrostatic pressure.
This maximum pressure will in most cases only be changed
slightly by higher order calculations.
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DEEP WATER STANDING WAVE

In the case of infinite deep water, D #es, or rather D/L P60 ,
we get more simple expressions. The progressive deep water wave was
found independently in chapter II to illustrate the method of finding
waves. But we also saw in chapter IV how to get the same deep water
wave from the wave on water of arbitrary depth. Eqs. 31, 32, 33, 35,

and 38 are unchanged. The others will be changed,

2 o (44)
kD >0 and ky -»0 (45)
tanh kD 1 (47)
% . g;% (47)
sinh ky ;>;— oY (48)
sinh kz 4?-;— 7 (49)
U »qk Jklz =) (50)
W@g_gek(zm;\/) (51)
P o,p ., Vlek(z - v) (52)
Y

In eqgs. 50, 51. and 52 2z and y are measured from the bot-
tom. But y -z is the distance below the surface and D - z +the

distance below the mean water level.
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If we use a coordinate system like Tor the progressive deep

water wave of chapter IT with =z = o at the mean water level we get
for u, w, and p
k -
u=gke (z yl> (53)
k -
w = 2 k(2 ?> (54)
ot
E_ . zZ ek(Z -0 5
: n 1 (55)

It ig geer that these expressions can also be used for the progres-

give wave,

Fig, 4. Maximum and minimum wave pressure,
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p+/(yH), at the ver-
tical wall in a standing wave w1th the steepness

H/L = 12% and H/D = 1.0. The Alry theory gives the
hydrostatic pressure at the mean water level, so the
shown dotted line can as well be used for z > o,

A similar proposal is more difficult fo use for the
trough because the pressure at the surface will not be p

= QO
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SHATLOW WATER STANDING WAVE
Ege. 31, 32, 33, 35, and 38 are unchanged. The others are

changed.
L D
D 200 or I > 0 (56)
D
tanh kD kD = 27 T (57)
L
7 S ram) (58)
sinh ky »ky (59)
cesh ky -1 (60)
aq 61
g (61)
dn 2
W -%5-‘%.57 (62)
g »y - z (63)
Eg. 43 will be
p G ;XE.__ZZ 6
L - SEE —Al
v Py -z 55 (64)
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WAVE PRESSURE

A very important problem for the engineer is to decide the
wave pressure exerted upon structures. In many cases the design
pressure for the geotechnical stability of the structure can be de-
cided by the maximum pressure from the standing wave, The design
negative pressure ( the wave suction ) is also decided from the stand-
ing wave. ( Disasters have occured, where vertical face breakwaters
have been sucked out into the ocean. Experiments, (and the formulas
of this chapter) show that the ’sucking’ force can be bigger than
the positive pressure force. ) For the stability we have an interest
in the integrated forces, the total horizontal wave force P and

the overturning moment around the foot point M.

OISR AN SN SN N

AT PLI LI L o vy aesdt

Fig. 5. The pressure+on a vertical wall, p* and M+ are integrated

resulti of p . P ig the total horizontal (sliding) force
and M ig the overturning moment around the footpoint.

P and M are needed for investigating the geotechnical
stability.
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From eq. 43 we find the total horizontal force P

P %1 ? st 1 cosh Ry -~ cosh Rz
—— dZ = [y - % 4+ o s '] dZ
v A Y A g R sinh Ry

y2 st 1
=T [y coth Ry - ﬁJ (65)

o

For the simple first order wave we use eqgs. 42 and 4o for st like

we did in eqg. 41 and we get

2
_y _ 1
=5 Vztanh kD [y coth ky - ] (66)

= |+

The overturning moment around the footpoint of the vertical wall is

found from eq. 43 by

u_ gﬁ 2 dz = j/ﬁ[y P G s 1 cosh Ry - cosh Rz .
Y A Y A g R sinh Ry
lz st 1 Xi 1 y 1 7)
= 28 2 | P A NN G (3
5 " e Rg_ U v coth By - R - oIy Ry} (

Tike before we can get a more simple expression by using eqs. 42 and

40 for G .
78

> 1

2
N_oy- v A A
il Sl ?tanh kD { [2 @ ] coth ky K T Eenn iy % (68)

The wave presure is defined as the difference between the water pres-
sure below the wave and the hydrostatic pressure from the mean water

level

.
el (69)

We then get for the total wave force

vy Ty 2 (70)

==

(71)
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The wave of this chapter is the same as the classical first
order wave (the standing Airy wave) within first order approximations.
So the differences are of second order. Those differences should be
negligible according to the theory but experiments show them to be
very important.

When an engineer is faced with the problem of finding the
wave pressure on a vertical wall it is of interest to consider the
movement of the water close to the wall. Using the Airy theory he
will quickly be faced with problems of contradictions.

The water moveg vertically up and down with the surface

following the Airy expression
iz = g cos eyt (72)
This gives a vertical velocity of the surface particle of
) H .
ws:5%=-—260S1nc,0t (73)

while the Airy formula for the vertical velocity would give

sin k(D + H/2)
sin kD

W o= mgwsinwt (74)

IS

As H for the standing wave in practical problems easily can be as big
ag D it is seen that there can be a rather big numerical difference
between eqgs. 73 and T4.
Thig difference is bigger and more important for the vertical accele-
ration.

But the most important difference is found for the pressure.
The Airy expression for the wave pressure is

B+ cosh kz

Y = ¥ cosn kD (75)
This expression can though not be used above the mean water level
so e.g. at the Technical University of Denmark it is proposed to use

the hydrostatic pressure for g 2 D

= y - % (76)
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This gives though a rather high positive pressure for steep waves
as it can be seen in chapter III on fig. 6.

At the same time the negative pressure or the ’wave sucking?®
can be too small so it is questionable for the practical engineer
to use this proposal. Eg. 76 has the advantage compared to other
more complicated expressions from the literature that it gives the
pressure p+ = 0 at the surface. But to give an expression as eq. 76
it is necessary that the wave has got no vertical acceleration above
the mean water level. And here the acceleration is of significant
importance for waves of practical interest.

Instead eqg. 41 for the pressure in first order waves should
be used. It is felt to be a reasonable simple expression to use,
speclally with the hand computers in common use.

Eqs. 66 and 68 have been compared to modeltests performed
by the author as a student in 1968, Those modeltests have been of
decisive importance for the author’s understanding of wave motion
at the vertical wall breakwater and resulted a year later in the
equations of this chapter, so modeltests and observations of nature
are felt to be important steps in making theoretical work.

It is seen that there 1s a reasonable good agreement between
experiments and theory, except for the negative pressure, the ’wave
sucking’, below trough of the less steep waves, where the sucking
Torce 1s estimated too high, This is because we have used the first
order theory all the way through so that we let both the crest and
the trough be H/2 high and deep. But for higher waves on shallow
waters the trough i1s significant less than H/2 deep giving a ’suck-
ing force’ less than that of egs. 66 and 68. This disadvantage can
be overcome by using a more realistic W 1in egs. 65 and 67 and if
possible estimate realistic st and R.

Within the scope of a first order theory there is a big free-
dom in estimating, without going beyond the hydrodynamic limits of

the theory,
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The positive pressure from the crest gives better agreement
between theory and experiments. This could also be expected. The
crest is higher than the H/2 wused in the pressure equations. But
this does not make the actual pressure bigger than the calculated,
because at the same time the actual negative vertical acceleration
is bigger than the calculated, which reduces the pressure from the
higher crest. In this way we end up with close to the right pressure
in our calculations. The pressure reducing effect from the bigger
negative acceleration of the higher crest can also be seen on the
pressure at the mean water level, the level where we have the biggest
pressures.

In chapter XII the pressure from the second order cnoidal
deep water wave is compared to the first order pressure, and it is
seen how well the first order expression of this chapter predicts
the maximum pressure. In the same chapter it is seen that the effect
of the negative vertical acceleration of the water at the time of
crest by the wall can be so big that the wave pressure even can be-
come negative at greater depths. Such effects of double humps on the
time-pressure curve cannot be explained by the first order theory of
€q. 41. It can be explained by eq. 43 though, with proper estimation
of ., GZs and R.
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Fig. 6.

H/L = 3% (where H is the wave height of the standing wave ).
The total horizontal (sliding) force and the overturning
moment around the footpoint from the wave pressure

on a vertical wall when it is maximum and when it is
minimum. Comparison of the first order sinusoidal

theory of this chapter with model tests.
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Fig. 7. H/L = 16% .
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For the relevant situation with'incoming design waves
of a wave height of around 7 m and a wave period of
10 sec, the wave steepness Tor the standing wave will
be around 16% for a vertical face breakwater placed
at a depth of 10 m.
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