CHAPTER IV 62

PROGRESSIVE FIRST ORDER WAVE ON ARBITRARY DEPTH

ABSTRACTS

The first order sinusoidal wave on arbitrary depth will here
be found in the same way as used in chapter II for the deep water
wave., The wave solution is the same as the wellknown Airy wave, except
that the expressions for velocities and pressure in a natural way
come out with a second order difference that makes them fit the bound-
ary conditions better. The expressions here are longer than for the
deep water wave, but the principles are the same, so the explanations

are shorter thig time.

BASIC EQUATIONS
We consider a two dimensional progressive wave of permanent

form on incompressible frictionless water without surface tension,

and the bottom is horizontal.
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Fig. 1. Definition sketch.
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Through a vertical we have the discharge q = q(x,t), so the
equation of continuity will give the wellknown expression for the
surface elevation n= iz(x,t)

0 o

wii e %%«m mm§§ (1)

y is the actual water depth, so with D being the mean depth we have

Y= D«awz (2)
It is convenient to have an expression for the actual (variable)
water depth, and in open channel hydraulics in Denmark the letter y
is used. It must not be confused with the vertical coordinate =.

7z 1is measured from the horizontal bottom.

For a permanent wave we have
O o0
ot = CK )

where ¢ 1s the wave celerity. Eqs. 1 and 3 give for q in a pro-

gressive wave without a resultant discharge

(1_:: ,CLPZ (4)

ﬁ is measured from the mean water level so

Q&QMXQ (5)

or

frgoiz‘r = () (6)

L is the wave length and T +the wave period so

L =c¢ T (7)

Besides from eq. 4, g can be found by the integration of the hori-
zontal particle velocity u = u(x,z,t) over a vertical from the

bottom to the surface

q = lfh dz (8)



64

Fig. 2. The result of the integration of u over a vertical is fixed,
but the vertical distribution of u is unknown. In this
chapter the distribution is assumed to be cosh, but in chap-
ter VIT it is written as an arbitrary function.

This time we expect u +to have a cosh - distribution (like
the Airy wave)., The possibility of finding a wave solution later in
eq. 28 also shows this to be correct. In chapter VII u will be
chosen with an arbitrary distribution. So to fulfil eg. 8; u will
be written
Sen By T © LR Son T (9)

Here eq. 4 was used. R 1s an unknown constant, which will be found

T =

to be R = 27n/L in eq. 29.

u is differentiated to give

o _  dn ~coshRz 2 cothRy coshRz on
@x =L @X {% Slﬂh Rﬁ QQQ ﬁi'hh Rg “ @k (10)

Here eq. 2 was used in the last term.
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With the local equation of continuity

du  ow
Sx oz - °© (11)
the vertical particle velocity w = w(x,z,t) 1s found by integration
with the boundary condition that at the bottom =z = o we have w = 0
dp sinh Rz
W= - ¢ 5—‘}%S1-——-——-nh Ry [ 1 - yR coth Ryl (12)

In a first order theory the last term can be neglected and we get
3n sinh Rz
" “5?31nh Ry (13)
This demands that

M R coth Ry &1 (14)

The situation here is more complicated than for the deep water wave,
We must still have that le,iS small, which means that the wave steep-
ness H/L must be small. At the same time coth Ry must not become
too big, which means that Ry (or the water depth) must not be too
small. The condition in eq. 14 is considered again later in eg. 58.
From eqs. 9 and 13 we get the first order approximation of

the horizontal particle acceleration G, = GX(Xazet) using eq. 3

du  Qu Bu 8u 2 d cosh Rz
O =gt =50t U5x T "5, =~ ° SEE Simhwry (15)
The vertical particle acceleration G = GZ(X,z,t) will be
o o 4w _ow %W W om 2 9% sinh Rz (16)
z ~dt ~ ot ox " "8z T O0xi~sinh Ry

The vertical dynamic equation is

op

- - = @G

I C (17)
where p = p(x,z,t) 1is the pressure, g the acceleration of gravity,

and ? the unit mass of the water
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From egs. 16 and 17 p is found by integration with the
boundary condition that at the surface z =y there is no water

pressure, p = O

£%2 0% 1 coshRuy ~ cosh Rz
=Y-aty g xR sinlh Ry

where v 1s the unit weight, so vy = glgs

(18)

By differentiation and using eq. 2 the horizontal pressure

gradient is found to

10p . & c? d%n 1 cosh Ry - cosh R=

X O0X 531(2’ q @x3 Simh Ry (19)
The horizontal dynamic equation is

- a‘;%x 0G, (20)

Using eq. 15 this gives another expression for 2p/ox

29
ganC— %Q Cf@«ghQZ (21)

Sinh Ry

eqs. 19 and 21 are combined to give the first order wave equation

on , £*0°n 1 coshRy-coshRz _ oy coshRz,

OX %mg OX* R sinh Ry g oX sinh Ry

=()( 22)

WAVE SOLUTION
Ege 22 must be fulfilled for all =z , also for the surface

-5 SERoothRy =0 o

By the use of eq. 2 coth Ry cen be expanded as

_ — CothRD+tanh Ry
Coth Ry = coth R(D+n) = 1+ cothRD tanh Ry

=(coth RD + tmh Rn)(1-cothRD tanh @v?)%» o
= coth RD ~ iCﬂ“ﬁthDmﬂtmh Qyz S S

~ Ccon R
= CO&L’TQBWM@?}S g (24)




67

5o in a first order theory coth Ry in eq. 23 can be substituted by
coth RD.

The wave celerity is then found from eqg. 23

VE ann w> (25)

Eq. 22 is solved by splitting it into two equations, an equa-

o
]

tion of the z-dependent terms and an equation not depending on z.
As discussed for the deep water wave in chapter II it is only neces-
sary to consider the z-dependent equation, now that we have solved
the surface equation, eq. 23. The z-dependent equation from eq. 22

gives

92 éBQ 1 cosh Rz N EE~§HQJR cosh Rz o (26)
g O0x3 R sinh Ry = g 0x  sinh Ry

or

3
§§@7+ %E,RZ = 0 (27)

This leads to the solution for a progressive wave

Q}: % cos R(x - ct) (28)

so that R must be
27
R=% =k (29)
So the solutions of egs. 25, 28, and 29 are the same as for the Airy

wave.

The wave will be found to be irrotational.
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FORMULAS OF THE FIRST ORDER PROGRESSIVE WAVE

We will now review the most important formulas

n= %CQS K (x=t) (30)
- 21

Kk = 7 (31)
- gL 9.

@“’MT“ o7 Lanh kD ij toanh kb (32)
- coshkz

mmmfzkgmhw (33)
. on sinhkz _ on sinhkz ,

WE==C0 sinh kg = 0F sinh ky (34)

ggmﬂ«ﬁk sink(x=ct) = @% (35)
_ €2 0*n { cesh ky—cosh kz

"'%”‘" Y-2+g 5K sinh kuy e

From eqg.30 we get

N - WRQ’V? (37)

OX*

Using ©q. 32 the pregsure in eq. 36 can then be written

D h k
¥ =y-z- ki -]

Eq. 36 can also be changed in a different way. The vertical accele-

(38)

ration at the surface 2z =y will be, using eq. 16

L O*
. .20
Gpo= C C)"“g (39)

Gos 1 coshRy - cosh Rz
g R sinh Ry (40)

This expression can be of practical use for e.g. irregular waves

when st and R can be estimated in & reasonable way.
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DEEP WATER AND SHALLOW WATER LIMIT

Por infinite deep water D 00 we have

%-M%QO (41)
kD->00 and Ky~ 00 (42)
tanh kD — 1 (43)
= %xg (44)
sinh ky = 4eky (45)
cosh kz@%@kz (46)

@@@Qk@k@“‘:ﬁ (47)

Eq. 44 for ¢ shows as wanted the same expression as eq. 40 in chap-
ter II. In eq. 47 =z and y are both measured from the bottom at
infinite depth. But the difference 2z - y 1s the negative distance
below the surface of the point considered, just like gz - N in eq.

42 in chapter II. So the two expressions for u are the same. In

the same way eqs. 34 and 36 for w and p will coincide with egs.

43 and 44 in chapter II for D M,
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Egs. 30, 317, and 35 are unchanged. The others are changed.

-]I)J“ - 00 or
tanh kD = kD
c =V gb

ginh ky % ky

cosh ky - 1

b
- - Z
Y y

Egq. 40 will Dbe

B
-3 - 7 +
Y y

D
T + 0
D
= 27 I
G 2 2
Z8 ¥y -z
g 2y

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)
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Pressure below the solitary wave, H/D = 0.6, according
to different theories. The wave profile ig drawn

with a horizontal scale that is half the vertical scale.
The traditional shallow water theory simply gives the
hydrostatic pressure, neglecting the influence of the
vertical acceleration,

In chapter VIIT an expreggsion for the pressure in
cnoidal and solitary waves is given, which is also
shown here,

But the simple expressions from this chapter can also
be used. In egs. 40 and 56 the surface acceleration

G e and the digtribution factor R should be estimated
in a reasonable and practical way. G is found from
egs. 39 and 37 substituting k with R. ®For R we have
here used R = 2n/(12A,), because of the following
considerations

In the sinusoidal wave L/4 is the horizontal distance
from the crest to the point with = o. For the solitary
wave, which has the point of inflection for y/H = 2/3,
we then say that the © = o point in a sinusoidal ap-
proximation is 3 times further down from the crest
than the point of inflection, so it ig estimated also
to be 3 times further out, i.e. /4 = 3Ay.

The result obtained is seen to be reasonablee Eqs.

40 and 56 give very close Lo the same graph.

There are other reasonable considerations, than the
one used above.
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CONDITION ON WAVE HETGHT

We will now consider the condition in eq. 14 again. For

shallow water waves we have

NR coth F?Wag for %@o (57)

This means that we in eq. 14 must demand the relative wave height

to be small

§§"<3§ i for == - () (58)

o
o
=

Fig. 4. The second order term in the vertical velocity for the
wave with H/L = 3.2%.
RR coth Ry should be small compared to 1. This term
ig shown above for R = H/2 (crest) and ? = - H/2 (trough)
and with R = k.
Even for the trough of a wave with H/D = 0.8 the second
order term here does not exceed 'the first order term.
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ATRY EXPRESSIONS

From the classical Airy wave we have

Ei cosh kz
v = W cosh kD (59)
where p+ is the wave pressure, i.e. waler pressure above hydrostatic

pressure from the mean water, so

p" = p - y(D - 2) (60)

Eg. 59 will result from eq. 38 with further first order approxima-

tions.

Approximating ky with kD egs. 58 and 38 will give

+
P _ _cosh kz4 cosh kz
Yy Vz YZ[1 cosh kD] - Q cosh kD (61)

the same as eq. 59.

The Airy expression eq. 59 has the practical problem, that
it can not be used above mean water level 2z > D. This ig not a
problem with egs.36, 38, and 4o0. They also give the exact pressure
at the surface, p = o for gz =y,

The Airy expressions for u and w are

cosh kz
v=c sinh kD (62)
dn sinh kz
W= 5% Sian D (63)

Comparing with egs. 33 and 34 it is seen that in egs. 62 and 63
y = D +%M has been approximated by D, a correct hydrodynamic
approximation in a first order theory. So the difference doegs not
seem to be big, But for waves with a wave height of practical inter-
est the difference can be felt important.

It is seen that the Airy expression €d. 62 will give bigger
forward horizontal velocities below the crest than eq. 33. Below
the trough eq. 62 will give a smaller backward velocity. This means
that the Airy expressions will give a rather big resultant discharge,
which is unwanted in a pure wave. Eq. 33 is without a resultant

discharge as demanded in eqs 4, 8, and 9.
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But eq. 33 may seem to fail in one respect. If we consider
the velocity near the bottom the Airy expression, eq. 62,
gives the same numerical size below the crest and the trough,
while eq. 33 gives a bigger backward velocity than forward
veloclty. From nature it is known that the maximum forward
velocity is bigger than the backward velocity, so that the
sand at the bottom is moved forward until the bottom by the
coast has reached the right steepness. But this does not
mean that eq. 33 is not so good. Because for a real wave

of the crest is bigger than ) of the trough and if that is
used in eq. 33, u will be increased below the crest and
decreased below the trough. Further, the sand-movement by
the bottom ig to a big extent caused by velocities due to
friction. This is not incorporated in an expression as eq.
33 for a frictionless wave.,

It is felt important that u in eq. 33 is in agreement with
the principles put forward for this wave theory (e.g. no
resultant water discharge). A formula not in agreement with
the principles put forward is difficult to use in further
hydrodynamic calculations, even though the formula incident-
ally in certain respects may give results that agree well
with experiments or nature. It may be of this reason that
previous attempts to calculate u for the shallow water
cnoidal wave have not been very succesful.

Airy theory

Deep water
02 -
ol
0 , , \ , , . —3p H/L
0 002 0.06 0./0 o9

Pig, 5. The presgsure at the mean water level below the crest,
which is the maximum wave pressure. Comparison of the
first order theory of this chapter with the Airy theory.
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The horigzontal velocity, u, below the crest and the
trough of the progressive wave with T = 10 sec.,

H =6 metres, D = 10 metres.

Comparison of the firgt order theory of this chapter
with the Airy theory.

It is seen that the Airy theory will give a resultant
discharge, while the new first order sinusoidal ex-
pressions give no problems of this kind. But with

a trough that is so deep as H/2 the new expression
will give rather big backward velocities. This problem
is overcome by using a more reasonable trough depth,
from the cnoidal theory of chapter IX,
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NUMERICATL, EXAMPLE
Let us consider a wave with the period, wave height and mean

water depth given as

T = 10 seconds 3 H = 6 metres 3 D = 1o metres (64)

The wave length is then found in the usual way by the aid of wave

tables for Alry waves. The deep water wave length will be

2

_ 8 2 _ . =
LO =5 7" = 1.56 107 = 156 m (65)
D 10 D
io = Teg - 0.064 3 I = 0,108 (66)
1o _
L= 0,108 7 93 m (67)
The wave steepness is
H 6
T=93 " 0.065 = 6.5 % (68)
The celerity is
L _ 23 _
c=F=90 = 9,3 m/sec (69)
Eq. 31 gives k
_2n _en _ 1
k = L 93 T 0,067 w (70)
The horizontal velocity at the surface, 2z =y =D + N s is, from
ed. 33,
u, =c¢y k coth k(D + ﬁ) (71)

For the crest we get, at the surface,

= Cc L k coth k¥ (D + g) = 9,3°§-o,o67~1,43 =

us,crest 2 2

2.7 m/sec  (72)
For the trough we get, at the surface

1 i
U trongh™ T © 5 k coth k (D-»E) = - 4,3 m/sec (73)
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The horizontal velocity at the bottom, z = o, is

1o 1
¢ sinh k(D + ?)

uy (74)

Below the crest we get, at the bottom,

_ . & 1
- 2

Yy, crest k Sion k(D 1 10/2)

= 9.3 «g—«o,o67° = 1.9 m/sec (75)

1
0.99
Below the trough we get, at the bottom,

H 1
Y, trough =~ ¢ 2 K Sinh k(D < H/2)

= - 3.8 m/sec (76)

The vertical velocity is got from eq. 34. At the surface z =y we

get
vy =-c 5% (77)
s ox
The maximum value isg then found for Vel to
w = C H k = 9.3 eéa 0,067 = 1.9 m/sec (78)
s ,max 2 2

For the pressure we use eg., 38, At the surface we get p = 0. At the

mean water level, z = D, eq. 38 will be

P _ 4 _ Lanh kD _ cosh kD ‘
Yy - ? {1 tanh ky L cosh ky L (79)

Below the crest we get for =z =D

p_H 1 - tanh kD [ - cosh kD ]
y 2 tanh k(D + H/?2) cosh k(D + H/2)
6 0.58 1.23 -
T2 { T 0.70 L1 - 1.40 ]g =2.7m (80)

At the bottom we find the wave pressure

+
b _ _ Yanh kD [ S
Yy o W {1 tanh ky [ cosh ky J (81)
where
+
p =p - y(D - z) (82)
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Below the crest we get at the bottom

+

p_ _6 _ 058 o v}n

Y_2§1 e L1 - gs 1y =23 (83)
Below the trough we get at the bottom

Ei 6 0.58 1

'Y=""§{1 'EEZ['1“1A1]§ = - 2.6m (84)

Z
TROUGH A CREST

i 7
‘ ]
% 3
* o
3
=11> £
a‘ oo,
g |le gt ?
3 4
3 )
[N RN
g S|| &
3 W<
€ 2
)
&
S i

T ogpes e ey
/»”/ (,»”/ [ 7 //, " [/ /f /,//, P ///’/ s ’{/;, //f’/ﬁ-"/ S ;’J/f’/}
’M@ Mgf/;g i o 7 9 5 4

Fig. 7 The wave pressure p+/Y below the crest and the trough of
the wave with T = 10 gsec, H= 6 m, D = 10 m. Comparison
of the first order theory of this chapter with the Airy
theory.
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We will now compare this with the results of the Airy theory.

u from eq. 62, and find
H cosh k(D + H/2) 6
= ~ = s 8
us,crest ¢ 3 k sinh kD 3 m/sec (85)
compared to 2.7 m/sec of eq. 72
H ., cosh k(D - H/2)
us,trough =703 k ginh kD - 2.9 m/sec (86)
compared to - 4,3 m/sec of eq. 73
u = C H k — 1 = 2,6 m/sec (87)
b,crest 2 ginh kD
compared to 1.9 m/sec of eq. 75
- 2,6 m/sec (88)

ub,trough - "uhorest -

compared to -~ 3.8 m/sec of eq. 76

w will be the same as in eq. 78
S ,max

The pressure i1s given by eq. 59. Above the mean water level =z = D

it is not defined. Below the crest we get for 2z =D

%:%:%:3.0111 (89)

to be compared to 2.7 m of eqg. 8o,

At the bottom below the crest we get

+

p_H___ 1 _
v ~ 2 cosh kD ™~ 2.4 m (90)

to be compared to 2.3 m of eq. 83,

Below the trough we get at the bottom

+

»p__5_ 1
v 2 cosh kD 204 m (91)

to be compared to - 2.6 m of eq. 84.

At the surface of the trough Airy gives

+
p_ _ Hcosh k(D - H/2)
y 2 cosh kD =-2.7mn (92)

This means that the pressure at the surface will be p = 0.3 m,

while the theory of this chapter gives the correct p = o,
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PRESSURE

It ig seen that the pressure as given in eg. 38 is a little
complicated to use for handcalculations. It is then a question 1f
the expression cannot be changed a little.

In view of the Airy expression of eq. 59, and comparing the
expressions for u and w of egs.33 and 34 with egs. 62 and 63,

it is found temptating to propose

j B ) cosh kz
vy D Z2 + N Sosn ky (93)

which for 2z $ D and 2z $y gives

-4
Do _D2 _(p.g) - ploshks (94)

Y Y W cosh ky
This expression is much more simple. It is also a correct first order
expression, because the difference between egs. 38 and 94 is only of
second order magnitude. Both expressions give the same wanted expres-
sion for the deep water limit,

But integrating the bottom pressure

Ph 1

77 = q? cosh ky (95)

over a wave length we will not get exactly zero as wanted, but a
gecond order value. Eq. 95 gives slightly too small values for the
pregssgure near the bottom.

Otherwise the difference between eqs. 38 and 93 1is small

enough to propose eq. 93 for practical use.
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