CHAPTER 1T 39

PROGRESSIVE FIRST ORDER DEEP WATER WAVE

ABSTRACTS

In this chapter we will find the first order sinusocldal wave
on infinite deep water in a different way than usually. The wave we
will find is the same as the wellknown and much used Alry wave. But
the expressions for velocities and pressure etc., will in a natural
way get a deviation of second order, by which they will fulfil the
boundary conditions asg digcussed in the preceding chapter. This gives
a numerical difference of importance for the engineer, but hydrodyna-
mically the two sets of results are identical within the Tfirst order
approximation. The deep water wave is of special interest because it
gives more gimple expressions than the wave on arbiltrary depth, and

still it shows the basic procedure,

BASIC EQUATIONS
We consider two dimensional progressive waves of permanent
form on an incompressible and frictionless fluid without surface

tension.

R -

— = g +9%

= dx

Fig. 1. The equation of continuity for the water discharge, q.
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Through a staticnary vertical we have the water discharge q = q(x,z,t).
At the same vertical the water surface moves up and down with the

elevation ?::ﬁ(xgt), Considering fig. 1 the equation of continuity
for q gives
2 .o (1)
OX Ot

Fig. 2. A progressive wave of constant form.

From fig. 2 we get the wellknown expression
waves of permanent form

SN 1)

where ¢ 1s the celerity,

for progressive

(2)

Egs. 1 and 2 are combined and integrated to give, for a wave
without a resultant discharge

(3)

W has ?: 0 at the mean water level, so

QLVZC{'XSﬁO (4)
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so that by eq. 2 we also have

(T dt
= (5)
o '
L is the wave length and T the wave period, sgo
L=c¢cT (6)
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Fig. 3 Definition sketch

As mentioned in chapter I, eq, 3 is a rather wellknown eX -
pression for the engineer. With a given vertical distribution of the
horizontal particle velocity u = u(x,z,%), it is possible to find

g also by integration of u from the bottom up to the gurface

@:f wdz (7)
< Of) )

S0 apart from the vertical distribution u is determined ( asg a
function of v ). By physical considerations it is possible to narrow
the number of distribution functions . But in this chapter we only
need to say that from our knowledge of the clasgical Alry theory we

can expect that u is exponential distributed. So to fulfil eq. 7
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we write for u

u = q R o'( Q) (8)

R is an unknown constant, which later (eq. 35) is found to R = 2u/L,
like for the Airy wave,

In chapter VI u will be chosen more arbitrary, but in this
first development of thetheory we want to make it more simple and
only prove that we can get a first order wave with u given as in

2qg. 8. With eq. 3 we change eqg. 8 to

u=cy R eR<Z—?) (9)

W“%‘ dx
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Fig. 4. The equation of continuity at a point of the fluid. An in-
finitesimal unit cube (dx = 1, dz = 1) 1is considered.

At any point of the fluid we have the equation of continuity

%‘{%—]%‘%:O (10)

where w = w(x,z,t) is the vertical particle velocity.,
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From eq. 9 we get

o o R(z-1) 2 _REz-n) O

2 = 040 V- o k& ¢ (11)
Deep below the surface the velocities due to the wave will vanish.
S0 with the boundary condition w % o for 2z % -0 egs. 10 and 11

give by integration

W o= G "%ﬁ [ -1+ qR ] eR(Z_ﬁ) (12)

In this expression we have terms of different orders of magnitude.
The following calculations will bz more simple if we evaluate the
terms right away and neglect minor terms. (In chapter VI all the
terms are taken along as long ag possible.)

Later, in eqs, 34 and 35, we will find the well known Airy

solution for ]

= g cos k(x - ct) (13)
and for R, as mentioned
R:k:%@- (14)

H 1s the wave height.
So the maximum value of 'QRAwill be

From measurements in the nature and the laboratory it is known that
the steepness H/L will not exceed 0.14. So for the maximum wave

we have

?R < 0.4 (16)

In eg. 12 %R is compared to 1. It is seen that YR is less than 1,
but to feel it justified to neglect @It it can be necessary in eq.
15 to demand H/L even smaller. Multiplying through with %?ﬁﬁx in

eq. 12 we get the two terms

e o
of * SE R
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From eq., 13 it is seen that B?/@X is proportional to (H/L)1 and
( 8?/@X)‘Q R is proportional to (H/L)2o So '@Q/@X ig gaid to be
small of 1’order and ( @?y@x)?R ig small of 2’order. In a first
order theory we will only take along the terms of first order magni-
tude and neglect the terms of second order ( and higher order ). So

in eq. 12 we will write w as

W = - C iajz“ GR<ZM§?) (17)
Tx

Bq. 17 will be used in the following calculations. For prac-
tical use we can choose between eqs. 12 and 17 for w . Gene-
rally eq. 12 cannot be sald to be more exact than eq. 17 as
long as only is determined with a first order approxima-
tion as in eq. 13. But in certain cases eq. 12 is more satis-
factory for the engineer, because it not only fulfils the
equation of continuity exactly, but also the kinematic sur-
face condition (see fig. %),

Fig, 5. u and w from eqs, 9 and 12 fulfil the kinematic surface
condition exactly.
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For a particle in the surface, which must stay in the surface,
we have Trom egs. 12, 2, and 9 for z = i

) 0 9
W :w@%ﬁ?ﬂ%ﬂ @?%?Qﬁ“‘a’?%”“.%ﬁ‘ (18)

where w_ and us are w and u at the surface.
s

After having discussed the approximations that led to the
first order expression, eq. 17, we will in the same way find the ho-
rizontal particle acceleration G = GX(X,Z,t) to the first order.

With eq. 2, egs. 9 and 17 give

_du o odwm,  Oue O 20 R(z-p)
G, =3¢ &t%ﬂ%@x“‘% Wf};&’“ &,ggf?@ k? (19)

In chapter VI the exact expression for GX 1e given. It is
seen that in eq. 19 we have only neglectéd the second order

term
2 J 2 5 R(z-N)
c«g%yz@@ i

For the engineer who would like to use the simple express-
iong for waves that are higher than infinitely small it can
be of interest to know how many negligible terms have been
neglected or how much fthey can add up to in numerical cases.,
In eq. 19 the first order approximation will be of same
numerical size as in eq. 17.

The vertical particle acceleration GZ = GZ(X,Z,t) will in

the first order bhe

L dwo o daw dur | o 0mr L o290 S Riz-h)
6, = 3 7 S WG = P 5 R (20

Here some terms of second and third order have been neglected,
so it is more difficult in a glance to determine the conse-
quenses in practical situations. In chapter V we will find
the equivalent expression for the standing wave, and then it
is seen that the first order expression is exact in the most
important cage, i.e. the acceleration at the surface at the
vertical wall.
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Fig. 6. The vertical equation of momentum for an infinitesimal unit
cube (dy = 1, dz = 1),

The vertical dynamic equation for a frictionless fluid is

m%‘% —X =80, (21)
where p = p(x,z,t) is the pressure of the fluid (above atmospheric
pressure), g the acceleration of gravity, y is the unit weight and
e the unit mass of the watsr, gso vy = Qe.

Egq. 21 is integrated, and using p = o at the surface z = VE

we get the first order expression

(22)

In eq. 20 the acceleration, GZ, at the surface, z = 7, is
called GZS° Then eq. 22 can also be written

© = oz s -eReE)

In this way we get an expression for the pressure which may
be used more general than just for regular first order sinus-
oidal waves, if only st and R can be estimated reason-
able,

(23)
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By differentation of eqg. 22 we find a first order expression
for the horizontal pressure gradient
1 dp c* @?5

19p _ on & o REN)
Sox = R TG o QL Vzl (247

S S Ve 23
P > > — P+ 3x dx

Fig, 7. The horizontal equation of momentum for an infinitesimal
unit cube (dx = 1, dz = 1).

The horizontal dynamic equation is

u«w@ =0 Gy, (25)

which with eq. 19 gives us still an expression for Jdp/dx

’iépmcéé‘? R(z-1) ¢

0p/O0x 1is eliminated from egs. 24 and 26 and we get a governing

wave equation

ot @s _ 2 3, ~
90 L[| gRED) €0 0eRe g o

From this equatlon we will find %, ¢ and R.
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WAVE SOLUTION
Eq. 27 is written
“ 2 5
g on N o%n 1 /N Q(z,wbg)m%waz @Q(z”?% (
P EW T e =()(28)
{@@ ox ' ox¥ R ox3 RE ox R 0
By this the terms are assembled in two groups : one group that does
not depend on =z, and one group that depends on =z. Bach of the two

groups will be set equal to o so

é%
{5+ Shhf=0 )

3% 1 o
hwe™? + M ReR=D) =0 o)

S50 eqg. 28 is substituted by egs. 29 and 30.

and

It is evident that when both eq. 29 and eq. 30 are fulfilled
simultaneously then eq. 28 is also fulfilled. This method

of splitting an equation into two or more equations is not

unknown from other problems in hydrodynamics. In eq. 30
R(z-y) could right away be divided over by which =z would

disappear, but still the equation originates from the z-de-

pendent terms, and because of that it will here be called
the z-~dependent equation.

I'rom eq. 30 we get

53
e =R (31)

This is substituted into eq. 29

L9~ R =0 (32)

Instead of eqgs. 29 and 3o we can then solve egs. 30 and 32,
By comparison it is seen that we can get eq. 32 directly
from eq. 27 by substituting 2z = into eq. 27, i.e. by
using the wave equation at the surface. This does of course
not mean that the resulting wave will fulfil the hydrodyna-
mic conditions only at the surface. They are fulfilled at
any point within first order approximation.
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A progressive wave of permarnent form is given b
p o O

W=Tx-ct) (33)

where T 1is a function. From eq. 30 it is seen that this function

1s a harmonic function, so for Y we choose

Vz:':; %Cﬁ)% R(}Qw@f) o
- E el
ks - i
o
4 u
7 -
Fig.8. The solution to is a harmonic (a cosine) function. Then the

amplitude must be half the wave height and the wave length
is as shown. This gives the solution for R, the original
unknown constant in the vertical distribution of u.

Then R in the cos~function is defermined geometrically to

271 .
R=%==k (35)

We have here used the usual notation k for 2u/L,

Egqs. 29 and 34 then gives us the celerity

@z%zgm% (36)

This expression could earlier have been found from eq. 32, the wave

equation at the surface.
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So far we have saild nothing about the rotation. The rotation
plays a decisive role in the clagsical wave theory, because
it is a fundamental condition to have irrotational motion.
So we will here find the first order rotation from eqs. 9

and 17 to

mm%% =0 (37)
oz X

If a positive or negative rotation is wanted, this can be

obtained by a change in u 1in eq. 9. This subject is loocked
upon in chapter VI for deep water waves of second order.

We have now solved our wave problem. u is given already in

9. At that time we did not know c, v and R, But they have since

been given by eqgs. 36, 34, and 35. The same can be said about w and

p 1in egs. 12 and 22,

Fig,

9.
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Pressure at the mean water-level, z = o, below the crest.
The first order sinusoidal theory of this chapter is
compared with the first order Airy theory. The Airy
theory neglects the vertical acceleration of the water
above the mean water level, so the pressure at this
point, with the maximum wave pressure, is hydrostatic.
The shown first order pressure will not be changed

so much by the cnoidal theory of chapter VI, because
with an increased crest the pressure reducing vertical
acceleration will also be increased.
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FIRST ORDER DEEP WATER WAVE FORMULAS

We will here give a review of the most important expressions

to be used 1in practice.

(X-ct) (38)
(39)
g
- k (40)
2
S0 ﬁé%ﬁ@T (41)
u=.cn k ek=n (42)
wzm@%%@k@”@ = %@M«Z“?} (43)
P ey £20* 0 11 kzen)
= —-Z+ VZ@MZ‘”?) (45)
on M ¢ et =— A 9y
S5 == K sink(x-ct) =—- 2 @%@ (46)
au

e Clkw (47)
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Meximum and minimum wave pressure, i.e., for crest

and trough. H/L = 10%. Comparison of the first
order theory of %his chapter with the Airy theory.
The Airy expression can actually not be used above

z = o for the crest, but with a hydrostatic pressure
at z = o it is reasonable to continue above z = o
with the hydrostatic pressure ags shown by the dotted
line,

At the surface of the trough the Alry expression

does not give a fluid pressure of p = o (i.e.

p = 0,5vH), so it is more difficult to decide on a
proposal for the wave pressure Irom the surface of the
trough up to z = o.
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Horizontal velocity below crest and ftrough. H/L = 10%.
Comparison of the first order theory of this chapter
with the Airy theory. It is seen that the Airy theory
will result in a net flow.
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APPENDIX II

NUMERICAL EXAMPLE

Let us illustrate the use of the final formulas, egs. 38 to
47 with a numerical example. Let the wave period and wave height be
given as

T = 1o seconds H = 1o metres (48)

The wave length is found by eq. 41

— 4%- 2 — [ ? — = 7
L = = T = 1,56°¢ 10”7 = 156 m (49)

The celerity 1s then

C = % = 7%? = 15,6 m/sec (50)
The wave steepness
% - 3;% = 0.064 = 6.4 % (51)

For k we find, eq. 39

27 27

ET = ng = 0,0403 m_1

kK = (52)

The horizontal velocity is given by eq. 42. At the surface z-y = o
S0

ug = ? ] k (53)

At the surface of the crest we get

- ¢ % kK = 15,6 © 0.0403 = 3,14 m/sec (54)

u
s,crest 2

And at the surface of the trough we get

u L= - C a k= - 3,14 m/séo (55)
s, trough 2
10 m below the mean water level, z = -1o m, we find below the crest

. k(-1o-H/2)
ucrest,z=m1o =C2 ke

-0.,0403 = 15

0
¢ 00,0403 * e

3.14 ° 0,55 = 1,72 m/sec (56)
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and below the trough

. B x(~104m/2)
trough,z=-10 2

~3.,14 ° 0,82 = -2.57 m/sec (57)

The vertical velocity is found from eq. 43. At the surface we get

Ws=“C§'§§“=§% (58)

For v) = o we get the maximum value of W

H
WS,“‘Z':—'O = C 5 k-1 = 3,14 m/sec (59)

The pressure is found from eq. 45. At the surface, z = ?, we get p=o0.

At the mean water level, z = o, we get

5 = ? e_k? for z = o (60)

Below the cregt we find

euouo403°5.o

= 5,0°0.82 = 4,1 m (61)

D % e»KH/E - 5.0

v

Below the mean water level the wave pressure 1s

_I.
P =P+ Yz (62)
At the surface of the trough, z = - H/2, where p = o we then find
_i..
.2
. 5 = 5.0 m (63)

We can now calculate the game example with the Alry theory., We then

..l..
have for u, w, and p

<
i
(@
o3
-
(0]
N
[0
~
A
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So the difference between the Alry expressions and the expressions
of thig chapter is mainly that the Airy theory uses the depth below
the mean water level, while it here ig found better to use the depth
below the surface.
The Airy expressions give

us,crest = 3,14 +1.,22 = 3,84 m/sec (67)
to be compared with 3.14 m/sec of eqg. 54,

us,trough = = 3,14 +0.82 = - 2,56 m/sec (68)
to be compared with - 3.14 m/sec of eqg. 55.
= 3.14° 0,67 = 2.70 m/sec (69)

ucrest,z=~1o
utrough,z=m10 = - 2,10 m/sec (70)
to be compared with egs. 56 and 57.
wS y =0 will be the same as found in eq. 59.
M=
The pressure at the surface of the crest cannot be found by

the Airy expression, eq. 66. At the mean water level we get

+
b_2_ 5.0 m (71)
Y Y

the hydrostatic pressure, which means that the vertical acceleration
of the crest above is neglected. So the pressure is not so big, eq.
61 gives 4.1 m,

At the surface of the trough, Alry gives

+

$=_5,os 0.82 = - 4,7 m (72)

to be compared with eq. 63. Eq. 72 shows that the Airy theory gives

a pressure at the surface of 0.9 m instead of p = o,
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Fig., 12, THE BASIC PHYSICAL PRINCIPLES OF THE WAVE THEORY.

o
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The horizontal velocity u is written as an unknown function.
The equation of continuity gives the vertical velocity w.

w and u give the vertical acceleration dw/dt.

The vertical equation of momentum then gives the pressure p.
This gives the horizontal pressure gradient 9p/dx.

u and w also give the horizontal acceleration du/dt, or the
force of inertia -q@du/dt.

Finally -9du/dt and 0p/Ox must ballance each other at any point
of the fluid, which determines the unknown function of u and
the wave profile.
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